Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 5 số tự nhiên liên tiếp \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\) ta có:
\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\) mà \(2^x\) không chia hết cho 5
nên \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)
Với \(y>0\) thì \(5^y⋮5\) nên \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y⋮5\) mà 11879 không chia hết cho 5(vô lí)
Với \(y=0\) thì \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9.10.11.12\)
\(\Rightarrow2^x+1=9\Rightarrow2^x=8\Rightarrow x=3\) (thỏa mãn)
Vậy x=3,y=0 thỏa mãn bài toán
1. Gọi 4 số tự nhiên liên tiếp là a ; a + 1 ; a + 2 ; a + 3.
Có tổng là : a + a + 1 + a + 2 + a + 3 = 4a + 6.
4a chia hết cho 4 ; 6 không chia hết cho 4. Vậy tổng trên không chia hết cho 4.
2.
a) x3 + 22 . 5 = 28 . 1100
x3 + 22 . 5 = 28
x3 + 20 = 28
x3 = 8
x3 = 23
x = 2
b) 3 x + 2 - 3x +1 = 6100 : 699
3 x + 2 - 3x +1 = 6
3 x + 1 ( 3 - 1 ) = 6
3x+1 . 2 = 6
3x+1 = 3
x + 1 = 1
x = 0
1.gọi 4 số liên tiếp lần lượt là: a;a+1;a+2;a+3.
tổng của 4 số liên tiếp là: a+a+1+a+2+a+3=4a+6
ta có: 4a chia hết cho 4
6 chia cho 4 dư 2
=>4a+6 chia cho 4 dư 2
vậy tổng 4 số liên tiếp là 1 số ko chia hết cho 4
2.
a/ x3+22.5=28.1100
=>x3+4.5=28.1
=>x3+20=28
=>x3=8=23
=>x=2
b/3x+2-3x+1=6100:699
=>3x.32-3x.3=6
=>3x(9-3)=6
=>3x.6=6
=>3x=1=30
=>x=0
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.....\frac{100^2-1}{100^2}\)
\(=-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)
\(=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4....100}\right)\)
\(=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(=-\frac{101}{200}\)
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{100^2}-1\right)\)(có 50 số hạng)
\(\Rightarrow D=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{100^2-1}{100^2}\right)\)
\(\Rightarrow D=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{99\cdot101}{100^2}\)
\(\Rightarrow D=\frac{101}{2\cdot100}=\frac{101}{200}\)
A=4+42+...+451
=4(1+4)+...+450(1+4)
=4*5+...+450*5
=(4+...+450)*5
Vì 5 chia hết cho 5 nên (4+...+450)*5 chia hết cho 5 hay A chia hết cho 5
Vậy A chia hết cho 5
a, (231+69)*(28+72)
=300*100
=30000
c,đặt A=1+2+2^2+2^3+......+2^99+2^100
2A=2+2^2+2^3+2^4+......+2^100+2^101
2A-A=2^101-1
A=2^101-1/2
d,đặt S=5+5^3+5^5+.......+5^97+5^99
5^2S=5^3+5^5+5^7+.....+5^99+5^101
25S-S=5^101-5
24S=5^101-5
S=5^101-5/24
nhân 2 cái kia lên rồi trừ lại cái dod dc bao nhiu la ket quả