Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
808/909=8/9
111/333=1/3=3/9
202/303=2/3
8/9+3/9-2/9=11/9-2/9
=9/9=1
Học tốt
\(\frac{2020.2020+3030}{2021.2021-1011}\)
\(=\frac{2020.2020+3030}{\left(2020+1\right)\left(2020+1\right)+3030}\)
\(=\frac{2020.2020+3030}{\left(2020+1\right)2020+2020+1-1011}\)
\(=\frac{2020.2020+3030}{2020.2020+2020+2020+1-1011}\)
\(=\frac{2020.2020+3030}{2020.2020+3030}=1\)
\(A=\frac{7}{4}\left(\frac{11}{4}+\frac{33}{20}+\frac{11}{10}+\frac{11}{14}\right)\)
\(A=\frac{7}{4}.\frac{44}{7}=11\)
A=202202.1/1212+202202.1/2020+202202.1/3030+202202.1/4242+202202.1/5656
A=202202.(1/1212+1/2020+1/3030+1/4242+1/5656)
A=202202.5/2424
A=417/1/12
A=202202.1/1212+202202.1/2020+202202.1/3030+202202.1/4242+202202.1/5656
A=202202.(1/1212+1/2020+1/3030+1/4242+1/5656)
A=202202.5/2424
A=5005/12
Ta có:
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(=\frac{7}{4}.\left[3333.\left(\frac{1}{1212}+\frac{1}{2020}+\frac{1}{3030}+\frac{1}{4242}\right)\right]\)
\(=\frac{7}{4}.\left[3333.\left(\frac{1}{12.101}+\frac{1}{20.101}+\frac{1}{30.101}+\frac{1}{42.101}\right)\right]\)
\(\frac{7}{4}.\left[3333.\frac{1}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
\(=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=33.\left[\frac{7}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
\(=33.\left[\frac{7}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
\(=33.\left(\frac{7}{4}.\frac{4}{7}\right)\)
\(=33.1\)
\(=33\)
Vậy \(A=33\)
\(\frac{7}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)=\frac{7}{4}\left(\frac{33\times101}{12\times101}+\frac{33\times101}{20\times101}+\frac{33\times101}{30\times101}+\frac{33\times101}{42\times101}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=\frac{7}{4}\times\frac{44}{7}=11\)
\(\dfrac{303}{808}\) + \(\dfrac{3030}{4848}\)
= \(\dfrac{303:101}{808:101}\) + \(\dfrac{3030:606}{4848:606}\)
= \(\dfrac{3}{8}\) + \(\dfrac{5}{8}\)
= \(\dfrac{8}{8}\)
= 1
\(\dfrac{303}{808}+\dfrac{3030}{4848}=\dfrac{1468944}{3917184}+\dfrac{2448240}{3917184}=\dfrac{3917184}{3917184}=1\)