K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

A=1x3 +3x5 +5x7 +....+99x101

6A=1x3x(5+1) + 3x5x(7-1) +5x7x(9-3) +...+ 99x101x(103-97)

6A=3+ 1x3x5 +3x5x7-1x3x5 + 5x7x9 -3x5x7 +....+99x101x103 - 97x99x101

6A=3+99x101x103=1019703

5 tháng 8 2016

Đặt \(S=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(\Rightarrow S=\frac{2}{2}.\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\right)\)

\(\Rightarrow S=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{99.101}\right)\)

\(\Rightarrow S=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Rightarrow S=\frac{3}{2}.\left(1-\frac{1}{101}\right)\)

\(\Rightarrow S=\frac{3}{2}.\frac{100}{101}\)

\(\Rightarrow S=\frac{150}{101}\)

26 tháng 1 2023

chịu

 

26 tháng 1 2023

 

A=1x3x(5+1) + 3x5x(7-1) +5x7x(9-3) +...+ 99x101x(103-97)

6A=3+ 1x3x5 +3x5x7-1x3x5 + 5x7x9 -3x5x7 +....+99x101x103 - 97x99x101

6A=3+99x101x103=1019703

vậy = 1019703

nếu sai chỗ nào thì sửa hộ mk vs

23 tháng 11 2020

\(A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}\)

22 tháng 4 2018

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

22 tháng 4 2018

2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

= 2 .( 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101 ) 

= 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/101 ) 

= 2 . ( 1 - 1/101 ) 

= 2 . ( 101/101 - 1/101 ) 

= 2 . 100/101

= 200/101

Chúc bn hok tốt !!!

5 tháng 3 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{100}{101}\)

\(=\frac{50}{101}\)

5 tháng 3 2019

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)

\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)

\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

17 tháng 1 2016

ta có : 2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

          2S=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

          2S=\(\frac{1}{1}-\frac{1}{101}\)

      2S+\(\frac{1}{101}\)\(\frac{1}{1}-\frac{1}{101}+\frac{1}{101}\)

      2S+\(\frac{1}{101}\)=1

ok