Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2 + 2.3 + 3.4 + .. + 99.100
<=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.( 5 -2) +...+ 99.100.(101-98)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 + ..- 98.99.100 + 99.100.101
= 999900
<=> A = 999900 : 3 = 333300
A=1.2+2.3+3.4+...+99.100
3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4+3.4.5+...+98.99.100+99.100.101 - 0.1.2-1.2.3-2.3.4-3.4.5-...-98.99.100
3A=99.100.101-0.1.2
3A=999900-0
3A=999900
A=999900:3
A=333300
A= 1.2+2.3+3.4.....+99.100
=>3A=1.2.3+2.3.3+3.3.4+....+99.100.3
=1.2(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0
=999900
=>A=999900:3=333300
số số hạng : (99,100 -1.2) : 1.1 +1=90 số
Tổng: (99.100 +1.2) x 90 : 2= 4513 ,5
\(A=1.2+2.3+3.4+....+99.100\\ 3.A=1.2.3+2.3.3+....+99.100.3\)
\(3.A=1.2.3+2.3.\left(4-1\right)+....+99.100\left(101-98\right)\\ 3.A=1.2.3+.....+99.100.101-98.99.100\)
\(3.A=99.100.101\\ A=33.100.101=333300\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+....+\frac{100}{99.100}-\frac{99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
1-1/2+1/2-1/3+1/3-1/4+1/4-..........+1/99-1/100=1-1/100=99/100
A=1.2+2.3+3.4+.........+99.100
3A=1.2.3+2.3.3+3.4.3+.............+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+...........+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..............+99.100.101-98.99.100
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+(3.4.5-3.4.5)+...........+(98.99.100-98.99.100)
=99.100.101
A=\(\frac{98.99.100}{3}=\frac{970200}{3}=323400\)
vậy A=323400
chắc chắn đúng
Bài giải:
Đặt A = 1.2 + 2.3 + 3.4 + ....+ 99.100
3A = 1.2.3 + 2.3.4 + 3.4.5 + ....+ 99.100.3
3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2)...... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 + ... + 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A = 999900
A = 999900 : 3
A = 333300
A=1.2+2.3+...+99.100
3A=1.2.3+2.3.4+3.4.3+...+99.100.3
3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=(1.2.3+2.3.4+3.4.5+...+99.100.101)-(0.1.2+1.2.3+2.3.4+...+98.99.100
3A=99.100.101-0.1.2
3A=999900-0
3A=999900
A=999900:3
A=333300
Đặt A = 1.2 + 2.3 + 3.4 + .... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99.100.101 - 98.99.100
= 99.100.101
\(\Rightarrow A=\frac{99.100.101}{3}=333300\)
Đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
3A = ( 1.2.3 + 2.3.4 + 3.4.5 + .... + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ....+ 98.99.100 )
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A = 999900
A = 999900 : 3
A = 333300
a,A = 1+2+3+…+(n-1)+n
A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3
A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3
A = 99.100.101 A = 333300
Tổng quát: A = 1.2+2.3+3.4+.… + (n - 1) n A = (n-1)n(n+1): 3
a,số hạng của tổng là mở ngoặc 2n-1 đóng ngoặc chia 2+1 = mở ngoặc 2n-2 chia 2+1 = mở ngoặc n-1 đóng ngoặc nhaan chia 2+1 = n-1+1=n vậy tổng là mở ngoặc +n- đóng ngoặc nhân n chia . = n mũ chia = n nhân mũ chia = n
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Đặt A = 1.2 + 2.3 + 3.4 + ...+99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 4.5.6 - 3.4.5 + ... + 99.100.101-98.99.100
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - 3.4.5 + ... + 99.100.101
=> 3A = 99.100.101
=> 3A = 999900
=> A = 999900 : 3
=> A = 333300
Vậy A = 333300