K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

A=-(1+2+3+......+2010)

A=-2011.2010:2=-(1005.2011)

2 tháng 10 2021
a) A=(3+5)^2=8^2=64; B=3^2+5^2=9+25=34 Vậy A>B b) C=(3+5)^3=8^3=512; D=3^3+5^3=27+125=152 Vậy C>D
29 tháng 6 2018

Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)  < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)\(\frac{2017}{2018}\)< 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )

29 tháng 6 2018

Ta có:

\(\frac{1}{2^2}\)\(\frac{1}{1.2}\).

\(\frac{1}{3^2}\)\(\frac{1}{2.3}\).

\(\frac{1}{4^2}\)\(\frac{1}{3.4}\).

...

\(\frac{1}{2017^2}\)\(\frac{1}{2016.2017}\).

\(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\).

Từ trên ta có:

\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)\(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)\(\frac{1}{2017}\)\(\frac{1}{2017}\)\(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.

=> \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)\(\frac{1}{2018^2}\)< 1.

=> ĐPCM.

\(N=1+2+2^2+...+2^{2008}\)

\(\Leftrightarrow2N=2+2^2+...+2^{2009}\)

\(\Leftrightarrow N=2^{2009}-1\)

\(M=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)

26 tháng 6 2017

Trước tiên ta nên tìm kết quả :

=> có 99 số số hạng

Tổng của kết quả đó là : 

( 99 + 1 ) . 99 : 2 = 4950

Vậy ta có : 2-(x+3) = 4950

x+3 = 2 - 4950

x+3 = -4948

x = -4948 - 3

x = -4951

26 tháng 6 2017

2-x-3 = (1+99) +(2+98)+...+( 49+51)+ 50

-1-x = 10+10 +..+ 10 + 50

-1-x = 490+50

-x= 540 + 1

-x = 541

=> x= -541

26 tháng 4 2018

\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)

\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(B=1-\dfrac{1}{100}\)

\(B=\dfrac{99}{100}\)

Vậy \(B=\dfrac{99}{100}\)

26 tháng 4 2018

B \(=\) \(\dfrac{1}{2}\) \(+\) \(\dfrac{1}{6}\) \(+\) \(\dfrac{1}{12}\) \(+\) \(\dfrac{1}{20}\) \(+\) \(\dfrac{1}{30}\) \(+\) . . . . . \(+\) \(\dfrac{1}{9900}\)

\(=\) \(\dfrac{1}{1.2}\) \(+\)\(\dfrac{1}{2.3}\) \(+\) \(\dfrac{1}{3.4}\) \(+\) \(\dfrac{1}{4.5}\) \(+\) \(\dfrac{1}{5.6}\) \(+\) . . . . . \(+\) \(\dfrac{1}{99.100}\)

\(=\) \(\dfrac{1}{1}\) \(-\) \(\dfrac{1}{2}\) \(+\) \(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{3}\) \(+\) \(\dfrac{1}{3}\) \(-\) \(\dfrac{1}{4}\) \(+\) \(\dfrac{1}{4}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{6}\) \(+\) . . . . . \(+\) \(\dfrac{1}{99}\) \(-\) \(\dfrac{1}{100}\)

\(=\) \(\dfrac{1}{1}\) \(-\) \(\dfrac{1}{100}\)

\(=\) \(\dfrac{99}{100}\)

10 tháng 3 2016

Ta có:

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(=1-\frac{1}{51}=\frac{50}{51}\)

\(\Rightarrow A=\frac{50}{51}:2=\frac{25}{51}\)