Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\) < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 - \(\frac{1}{2018}\)= \(\frac{2017}{2018}\)< 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)< 1 ( dpcm )
Ta có:
\(\frac{1}{2^2}\)< \(\frac{1}{1.2}\).
\(\frac{1}{3^2}\)< \(\frac{1}{2.3}\).
\(\frac{1}{4^2}\)< \(\frac{1}{3.4}\).
...
\(\frac{1}{2017^2}\)< \(\frac{1}{2016.2017}\).
\(\frac{1}{2018^2}\)< \(\frac{1}{2017.2018}\).
Từ trên ta có:
\(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)+ \(\frac{1}{2018^2}\)< \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+...+ \(\frac{1}{2016.2017}\)+ \(\frac{1}{2017.2018}\)= 1- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+...+ \(\frac{1}{2016}\)- \(\frac{1}{2017}\)+ \(\frac{1}{2017}\)- \(\frac{1}{2018}\)= 1- \(\frac{1}{2018}\)< 1.
=> \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+...+ \(\frac{1}{2017^2}\)+ \(\frac{1}{2018^2}\)< 1.
=> ĐPCM.
\(N=1+2+2^2+...+2^{2008}\)
\(\Leftrightarrow2N=2+2^2+...+2^{2009}\)
\(\Leftrightarrow N=2^{2009}-1\)
\(M=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)
Trước tiên ta nên tìm kết quả :
=> có 99 số số hạng
Tổng của kết quả đó là :
( 99 + 1 ) . 99 : 2 = 4950
Vậy ta có : 2-(x+3) = 4950
x+3 = 2 - 4950
x+3 = -4948
x = -4948 - 3
x = -4951
2-x-3 = (1+99) +(2+98)+...+( 49+51)+ 50
-1-x = 10+10 +..+ 10 + 50
-1-x = 490+50
-x= 540 + 1
-x = 541
=> x= -541
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B=1-\dfrac{1}{100}\)
\(B=\dfrac{99}{100}\)
Vậy \(B=\dfrac{99}{100}\)
B \(=\) \(\dfrac{1}{2}\) \(+\) \(\dfrac{1}{6}\) \(+\) \(\dfrac{1}{12}\) \(+\) \(\dfrac{1}{20}\) \(+\) \(\dfrac{1}{30}\) \(+\) . . . . . \(+\) \(\dfrac{1}{9900}\)
\(=\) \(\dfrac{1}{1.2}\) \(+\) \(\dfrac{1}{2.3}\) \(+\) \(\dfrac{1}{3.4}\) \(+\) \(\dfrac{1}{4.5}\) \(+\) \(\dfrac{1}{5.6}\) \(+\) . . . . . \(+\) \(\dfrac{1}{99.100}\)
\(=\) \(\dfrac{1}{1}\) \(-\) \(\dfrac{1}{2}\) \(+\) \(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{3}\) \(+\) \(\dfrac{1}{3}\) \(-\) \(\dfrac{1}{4}\) \(+\) \(\dfrac{1}{4}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{6}\) \(+\) . . . . . \(+\) \(\dfrac{1}{99}\) \(-\) \(\dfrac{1}{100}\)
\(=\) \(\dfrac{1}{1}\) \(-\) \(\dfrac{1}{100}\)
\(=\) \(\dfrac{99}{100}\)
Ta có:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}=\frac{50}{51}\)
\(\Rightarrow A=\frac{50}{51}:2=\frac{25}{51}\)
10150 kết quả đúng