Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g,
\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)
\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)
* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)
\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)
\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)
\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}=\)
\(\frac{3xz-2yz}{37z}=\frac{5yx-3zx}{15x}=\frac{2zy-5xy}{2y}=\frac{3xz-2yz+5yx-3zx+2zy-5xy}{37z+15x+2y}=0\)(t/c dãy tỉ số bằng nhau)
\(\frac{3x-2y}{37}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{5y-3z}{15}=0\Rightarrow5y=3z\Rightarrow\frac{z}{5}=\frac{y}{3}\left(2\right)\)
\(\frac{2z-5x}{2}=0\Rightarrow2z=5x\Rightarrow\frac{x}{2}=\frac{z}{5}\left(3\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=\frac{-4}{1}=-4\)
\(x=-8,y=-12,z=-20\)
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\)
\(\Leftrightarrow\frac{5\left(3x-2y\right)}{5.37}=\frac{2\left(5y-3z\right)}{2.15}=\frac{3\left(2z-5x\right)}{3.2}\)
\(\Leftrightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}=\frac{15x-10y+10y-6z+6z-15x}{5.37+2.15+3.2}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-2y}{37}=0\\\frac{5y-3z}{15}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=0\\5y-3z=10\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=2y\\5y=3z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Leftrightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)
\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}\)
Áp dụng tính của dãy tỉ số bằng nhau:
\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=-\frac{4}{1}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}}\)