\(\dfrac{x}{5}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{y-z}{6-7}=\dfrac{39}{-1}=-39\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-39\right).5=-195\\y=\left(-39\right).6=-234\\z=\left(-39\right).7=-273\end{matrix}\right.\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{y-z}{6-7}=\dfrac{39}{-1}=-39\)

Do đó: x=-195; y=-234; z=-273

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

3 tháng 2 2019

\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)

14 tháng 10 2017

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)

\(\Rightarrow\dfrac{x+y-z}{20+24-21}=\dfrac{138}{23}\)=6

\(\Rightarrow\dfrac{x}{20}=6\Rightarrow x=120\)

\(\Rightarrow\dfrac{y}{24}=6\Rightarrow y=144\)

\(\Rightarrow\dfrac{z}{21}=6\Rightarrow z=126\)

Vậy : x = 120

y = 144

z = 126

5 tháng 11 2017

a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2

\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6

\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8

\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10

vậy x=6,y=8,z=10

5 tháng 11 2017

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)

từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1

\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9

\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12

\(\dfrac{z}{16}\)=-1=>z=-1.16=-16

vậy...

3 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

\(=\dfrac{2x-3y+z}{18-36+20}\)

\(=\dfrac{6}{2}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.12=36\\z=3.20=60\end{matrix}\right.\)

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow x.\dfrac{2}{3}=y.\dfrac{3}{4}=z.\dfrac{4}{5}\)

\(\Rightarrow x:\dfrac{3}{2}=y:\dfrac{4}{3}=z:\dfrac{5}{4}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

\(=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}\)

\(=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.\dfrac{3}{2}=18\\y=12.\dfrac{4}{3}=16\\z=12.\dfrac{5}{4}=15\end{matrix}\right.\)

4 tháng 8 2017

Ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)

\(\dfrac{y}{3}=\dfrac{z}{5}=>\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ (1),(2)=>\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)=\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

=>\(\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

3 tháng 11 2018

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

31 tháng 10 2018

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

8 tháng 12 2018

Cậu không làm được hay cần gấp con nào nhỉ ?

Bài 1:

a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)

=>2x-10=x+2

=>x=12

b: \(\Leftrightarrow\left(x+2\right)^2=100\)

=>x+2=10 hoặc x+2=-10

=>x=-12 hoặc x=8

c: \(\Leftrightarrow\left(2x-5\right)^3=27\)

=>2x-5=3

=>2x=8

=>x=4