Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu $x,y$ là số tự nhiên, $xy=1$ thì chỉ xảy ra TH $x=y=1$
Khi đó:
$\frac{5x+7y}{6x+5y}=\frac{12}{11}\neq \frac{29}{28}$
Bạn xem lại đề nhé.
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
1. \(\frac{x-5}{y-4}\) = \(\frac{5}{4}\)
=> ( x - 5 )4 = ( y - 4 )5
4x - 20 = 5y - 20
4x = 5y - 20 + 20
4x = 5y (1)
Theo bài ra , ta có x - y = 6 nên x = y + 6 (2)
Thay (2) vào (1) , có 4x = 5y <=> 4( y + 6 ) = 5y <=> 4y + 24 = 5y
=> 24 = 5y - 4y => 5y - 4y = 24 => y = 24
Thay y = 24 vào (2) ta đc : x = 24 + 6 = 30
Vậy \(\frac{x}{y}\) = \(\frac{30}{24}\) = \(\frac{5}{4}\)