\(x^2+x+1\) =( \(y^3+y-3\) ) (
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2020

\(xy+yz+xz\ge x+y+z\)

\(min=1\)\(x=1,y=1,z=1\)\(x=2,y=2,z=2\)thỏa mãn đk: \(xy+yz+xz\ge x+y+z\)

\(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{1^3+8}}+\frac{1}{\sqrt{1^3+8}}+\frac{1}{\sqrt{1^3+8}}\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{1^3+8}}3\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{1+8}}3\ge1\)\(\Rightarrow\)\(\frac{1}{\sqrt{9}}3\ge1\)\(\Rightarrow\)\(\frac{1}{3}3\ge1\)(đk :\(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^3}{\sqrt{z^3+8}}\ge1\))

10 tháng 10 2020

Ta có đánh giá quen thuộc sau: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)kết hợp giả thiết \(xy+yz+zx\ge x+y+z\)suy ra \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge3\left(x+y+z\right)\Rightarrow xy+yz+zx\ge x+y+z\ge3\)

Dùng bất đẳng thức Bunyakosky dạng phân thức xét vế trái của bất đẳng thức: 

\(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+6-\left(x+y+z\right)+12}\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)Đặt x + y + z = t ≥ 3 xét\(\frac{2t^2}{t^2-t+12}-1=\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t+4\right)\left(t-3\right)}{t^2-t+12}\ge0\)(đúng với mọi t ≥ 3)

Như vậy, \(\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\ge1\)hay \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge1\)(đpcm)

Đẳng thức xảy ra khi x = y = z = 1

7 tháng 11 2016

Bài 3:

Xét họ đường cong \(\left(C_m\right):y=f_m\left(x\right)=mx^4\) và các đường thẳng \(d_m:y=k_mx+n_m\),

với \(x\in\left(0;3\right)\)\(m=1,2,3\)

Điều kiện \(\left(C_m\right)\) tiếp xúc với \(d_m\)

\(\begin{cases}mx^4=k_mx+n_m\\4mx^3=k_m\end{cases}\)\(,m=1,2,3\)

Ta cần chọn x1,x2,x3 thỏa mãn

\(\begin{cases}k_1=4x_1^3;k_1=k_2=k_3=k\\k_2=8x_2^3\\k_3=12x_3^3\\x_1+x_2+x_3=3\end{cases}\)\(\Rightarrow\begin{cases}x^3_1=2x^3_2=3x^3_3\\x_1+x_2+x_3=3\end{cases}\)

\(\Rightarrow\begin{cases}x_1=\frac{3\sqrt[3]{6}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}}\\x_2=\frac{x_1}{\sqrt[3]{2}}\\x_3=\frac{x_1}{\sqrt[3]{3}}\end{cases}\).Suy ra \(k=4x_1^3=\frac{648}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

\(n_1+n_2+n_3=-3x_1^4\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}\right)=-\frac{1458}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Mặt khác: \(f_m^n\left(x\right)=12mx^2>0,\forall x\in\left(0;3\right)\),suy ra \(f_m\left(x\right)\) là hàm lồi trên khoảng \(\left(0;3\right)\).

Do đó, trên khoảng (0;3) đường cong \(\left(C_m\right)\) không nằm phía dưới tiếp tuyến \(\left(d_m\right)\),tức là \(f_m\left(x\right)\ge g_m\left(x\right),\forall x\in\left(0;3\right)\) (*)

Từ hệ thức (*),ta có:

\(a^4\ge ka+n_1\)

\(2b^4\ge kb+n_2\)

\(3c^4\ge kc+n_3\)

Cộng theo vế ta có:

\(P\ge k\left(a+b+c\right)+n_1+n_2+n_3\)

\(=3k+n_1+n_2+n_3\)

\(=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)

Vậy GTNN của \(P=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\) khi \(a=x_1;b=x_2;c=x_3\)

 

7 tháng 11 2016

2/ Áp dụng BĐT BCS : \(25=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)

\(\le\sqrt{2\left(x^2+y^2\right)}.\left(x^3+y^3\right)\)

\(\Rightarrow x^3+y^3\ge\frac{25}{\sqrt{2.5}}=\frac{5\sqrt{10}}{2}\)

Đẳng thức xảy ra khi \(\begin{cases}\frac{\sqrt{x}}{\sqrt{x^3}}=\frac{\sqrt{y}}{\sqrt{y^3}}\\x=y\\x^2+y^2=5\end{cases}\) \(\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)

Vậy MinP = \(\frac{5\sqrt{10}}{2}\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)

 

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

28 tháng 11 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{1+y^2}\ge1-\frac{y}{2};\frac{1}{1+z^2}\ge1-\frac{z}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge3-\frac{x+y+z}{2}=3-\frac{3}{2}=\frac{3}{2}\)

Khi \(x=y=z=1\)

30 tháng 10 2020

các bạn giúp mn vs

NV
21 tháng 10 2019

\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)

\(\Leftrightarrow x+y+2=0\)

(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)

\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)

\(\Rightarrow x+y=-2\)

\(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)

Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)

Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)

NV
21 tháng 10 2019

2/ \(x;y;z\ne0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)

3/ \(\Leftrightarrow mx-2x+my-y-1=0\)

\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)

Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m

https://grandedesafio.com/vn/quiz/32281536

10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=