Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này là hệ 3 ẩn rồi
===================================
a, theo bài ra
x+y=6 (1)
-y +z = - 5 (2)
(1) + (2) <=> x+z = 6-5=1 , lại có x-z=9
=> (x+z)+(x-z)=1+9<=> 2x=10<=> x=5 => z = -4
Thay x=5 vào (1) => y=6-x=6-5=1
vậy x=5 , y=1 , z = -4
:V tương tự với câu b nhé
Mk có cách khác nhé:
b) Ta có:
\(x+y-y-z-z-x=6+7+13\)
\(-2z=26\Rightarrow z=-13\)
\(\Rightarrow y=6;x=0\)
Vậy .....
a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)
\(\dfrac{y}{4}=2\Leftrightarrow y=8\)
b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
xy + 2x - 3y = 9
\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3
\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3
\(\Leftrightarrow\) (2 + y)(x - 3) = 3
Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:
x - 3 | 3 | 1 | -1 | -3 |
2 + y | 1 | 3 | -3 | -1 |
x | 6(TM) | 4(TM) | 2(TM) | 0(TM) |
y | -1(TM) | 1(TM) | -5(TM) | -3(TM) |
Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}
Chúc bn học tốt!
Ta có: x/2=y/3 =>x/8=y/12 (1)
y/4=z/5 =>y/12=z/15 (2)
Từ 1 và 2 => x/8=y/12=z/15
=> (x/8)2=(y/12)2=z/15
hay x2/64=y2/144=z/15
Áp dụng t/c của dãy tỉ số bằng nhau,có
x2/64=y2/144=z/15=(x2 - y2)/(64 - 144)= -16/-80=1/5
Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5
=>x=\(\sqrt{\frac{64}{5}}\)
y2/144=1/5 => y2=144 . 1/5=144/5
=>y=\(\sqrt{\frac{144}{5}}\)
z/15 = 1/5 => z =15 . 1/5=3
mk lm sai thì thôi nha ^-^
theo đầu bài ta có hệ:
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)
giải hệ ta được:\(\hept{\begin{cases}x=\frac{5}{3}\\y=-3\\z=-\frac{5}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)
Ta thấy: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x+y+z}{5+7+9}=\frac{315}{21}=15\)
Khi đó:
\(\frac{x}{5}=15\)\(\Rightarrow x=15\cdot5=75\)
\(\frac{y}{7}=15\)\(\Rightarrow y=15\cdot7=105\)
\(\frac{z}{9}=15\)\(\Rightarrow z=15\cdot9=135\)
Ta có: x(x+y+z)=(-5) (1)
y(x+y+z)=9 (2)
z(x+y+z)=5 (3)
\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)
+ Với x+y+z=3 thì:
Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)
Từ (2) và (4) \(\Rightarrow\) y=3
Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)
+ Với x+y+z=-3
Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)
Từ (2) và (5) \(\Rightarrow y=-3\)
Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)
Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)