Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{2x}{4}=\frac{2y}{3}=\frac{3z}{4}=\frac{2\left(x+y+x\right)+z}{4+3+4}=\frac{2.145+z}{11}\)
\(\Rightarrow\frac{3z}{4}=\frac{290+z}{11}\Rightarrow z=10\)
Từ đó tìm ra x,y thông qua biểu thức \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{3.10}{4}=\frac{15}{2}\)
Theo bài ra ta cs
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)và \(x+y+z=145\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30\)
\(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}}\)
đặt x − 1 2 = y − 2 3 = z − 3 4 = k 2 x−1 = 3 y−2 = 4 z−3 =k(k ∈ ∈Z) =>x-1=2k=>x=2k+1 y-2=3k=>y=3k+2 z-3=4k=>z=4k+3 thay x=2k+1;y=3k+2;z=4k+3 vào x-2y+3z=-10 ta được : 2k+1-2(3k+2)+3(4k+3)=-10 2k+1-6k-4+12k+9=-10 8k+6=-10 8k=-10-6 8k=-16 k=-2 =>x=2k+1=2.(-2)+1=-4+1=-3 =>y=3k+2=3.(-2)+2=-6+2=-4 =>z=4k+3=4.(-2)+3=-8+3=-5 vậy x=-3;y=-4;z=-5
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=-\frac{20}{-4}=5\)
x=10
y=15
z=20
có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(x=2.5=10,2y=6.5=30,3z=12.5=60\)
=>\(x=10,y=15,z=20\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[\left(-3,2\right)+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[-\frac{3}{2}+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=-\frac{11}{10}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{11}{10}-\frac{4}{5}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{19}{10}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{19}{10}\\x-\frac{1}{3}=-\frac{19}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{67}{30}\\x=-\frac{47}{30}\end{cases}}\)
Ta có: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}.\)
\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\) và \(x+y+z=145.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(60;45;40\right).\)
Chúc bạn học tốt!
Bạn có thể giúp mình thêm câu nữa đc ko