\(\frac{x}{30}=\frac{y}{10}=\frac{z}{6}\) và x+y+z=92

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: X/30=Y/10=Z/6=x+y+Z/30+10+6=92/46=2(vì x+y+Z=92) => X/30=2 => x=60 Y/10=2 => y=20 Z/6=2 => Z=12 Vậy.... Tick cho mik nha
19 tháng 9 2017

Theo đề bài ra ta có:

x/30=y/10=z/60=x+y+z/30+10+60=92/100=0,92

=> x/30 = 0,92 => 0,92 × 30 = 27,6

=> y/10 = 0,92 => 0,92 × 10 = 9,2

=> z/60 = 0,92 => 0,92 × 60 = 55,2

Vậy x = 27,6 ; y = 9,2 ; z = 55,2

24 tháng 7 2019

1)

a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).

=> \(\frac{x}{7}=\frac{y}{13}\)\(x+y=60.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(21;39\right).\)

c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)

=> \(\frac{x}{9}=\frac{y}{10}\)\(y-x=120.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1080;1200\right).\)

d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=81.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)

Mình chỉ làm 3 câu thôi nhé, dài quá bạn.

Chúc bạn học tốt!

23 tháng 7 2016

Ta có :

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\\\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\end{cases}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Theo tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow x=2\times10=20\)

\(\Rightarrow y=2\times15=30\)

\(\Rightarrow z=2\times21=42\)

k cho mk nha

23 tháng 7 2016

mình chỉ nõi cách lm thôi nha

ta quy đồng lên cho tiện

sau đó ta  dùng phương thức dãy tỉ số bắng nhau

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

5 tháng 11 2017

Tớ chỉ làm câu b thôi nhé

Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần

92:(15+10+21)=2

x=2.10=20

y=2.15=30

z=2.21=42

16 tháng 7 2017

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow x=20;y=30;z=42\)

16 tháng 7 2017

Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)(1)

            \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\) (2)

Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Ta có : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

Nên : \(\frac{x}{10}=2\Rightarrow x=20\)

         \(\frac{y}{15}=2\Rightarrow y=30\)

          \(\frac{z}{21}=2\Rightarrow z=42\)

Vậy x = 20 , y = 30 , z = 42 . 

10 tháng 8 2019

a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)

8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)

=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)

=> x = 24,y = 15,z = 6

b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)

\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)

=> x = -165 , y = -20 , z = -25

c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k

=> xyz = 12k . 9k . 5k

=> xyz = 540k3

=> 540k3 =20

=> k3 = 20/540

=> k3 = 1/27

=> k = 1/3

Do đó : x= 4 , y = 3 , z = 5/3

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)