Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9
= (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
3)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{50}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1750}{71}\\y=\frac{1050}{71}\\z=\frac{650}{71}\end{cases}\)
4)
\(5x=12y=8z\)
\(\Rightarrow\frac{5x}{120}=\frac{12y}{120}=\frac{8z}{120}\)
\(\Rightarrow\frac{x}{24}=\frac{y}{10}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{24}=\frac{y}{10}=\frac{z}{15}=\frac{x+y+z}{24+10+15}=\frac{46}{49}\)
\(\Rightarrow\begin{cases}x=\frac{1196}{49}\\y=\frac{460}{49}\\z=\frac{690}{49}\end{cases}\)
5)
\(6x=4y=2z\)
\(\Rightarrow\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x-y-z}{2-3-6}=\frac{27}{-7}\)
\(\Rightarrow\begin{cases}x=\frac{54}{-7}\\y=\frac{81}{-7}\\z=\frac{162}{-7}\end{cases}\)
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{6}\Rightarrow\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}\)
áp dụng tính chất dãy tỉ số bn ta có
\(\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{15-6+12}=\frac{24}{21}=\frac{8}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{40}{7}\\y=\frac{24}{7}\\z=\frac{48}{7}\end{cases}}\)
đề bài câu a xem lại nhé
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4};x+z=18\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\)\(x=3.2=6\)
\(y=3.3=9\)
\(z=3.4=12\)
a, 3x = 2y = z
<=> \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{2}+1}=\frac{18}{\frac{11}{6}}=\frac{108}{11}\)
\(\Rightarrow\hept{\begin{cases}3x=\frac{108}{11}\\2y=\frac{108}{11}\\z=\frac{108}{11}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{36}{11}\\y=\frac{54}{11}\\z=\frac{108}{11}\end{cases}}\)
b, 6x = 4y = -2z
<=> \(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{-1}{2}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{-1}{2}}=\frac{x-y-z}{\frac{1}{6}-\frac{1}{4}+\frac{1}{2}}=\frac{27}{\frac{5}{12}}=\frac{324}{5}\)
\(\Rightarrow\hept{\begin{cases}6x=\frac{324}{5}\\4y=\frac{324}{5}\\-2z=\frac{324}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{54}{5}\\y=\frac{81}{5}\\z=\frac{-162}{5}\end{cases}}\)