Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z
⇒[
(x+2)2=0 |
(y−3)4=0 |
⇒[
x+2=0 |
y−3=0 |
⇒[
x=−2 |
y=3 |
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z
⇒[
(x+y−11)2=0 |
(x−y−4)2=0 |
⇒[
x+y=11 |
x−y=4 |
⇒[
x=(11+4):2=7,5 |
y=(11−4):2=3,5 |
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0
x2 + 2x2y2 + 2y2 - x2y2 - 2x2 - 2 = 0
x2y2 + 2y2 - x2 - 2 = 0
y2.(x2 + 2) - (x2 + 2) = 0
(y2 - 1)(x2 + 2) = 0
Ta có : x2 + 2 \(\ge\) 0
Nên \(\orbr{\begin{cases}y^2-1=0\\x^2+2=0\end{cases}\Rightarrow\orbr{\begin{cases}y=\left(1;-1\right)\\x\in R\end{cases}}}\)
<=> x2 + 2x2y2 + 2y2 - x2y2 + 2x2 - 2 = 0
<=> -x2 + x2y2 + 2y2 - 2 = 0
<=> x2 (y2 - 1) + 2 (y2 - 1) = 0
<=> (x2 + 2)(y2 - 1) = 0
Vì x2 \(\ge\)0 với mọi x => y2 - 1 = 0 <=> y = -1 và y = 1.
Vậy x \(\in\)R , y = {-1;1}
a) làm mẫu cho cả phần b lun
\(|2x-5|+|2,5-x|=0\left(1\right)\)
Ta có: \(2x-5=0\Leftrightarrow x=\frac{5}{2}\)
\(2,5-x=0\Leftrightarrow x=2,5=\frac{5}{2}\)
Lập bảng xét dấu :
2x-5 2,5-x 5/2 0 0 - - + +
+) Với \(x< \frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5< 0\\2,5-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=5-2x\\|2,5-x|=x-2,5\end{cases}}\left(2\right)\)
Thay (2) vào (1) ta được :
\(5-2x+x-2,5=0\)
\(-x+\frac{5}{2}=0\)
\(x=\frac{5}{2}\)( loại )
+) Với \(x\ge\frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5\ge0\\2,5-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=2x-5\\|2,5-x|=2,5-x\end{cases}}\left(3\right)\)
Thay (3) vào (1) ta được :
\(2x-5+2,5-x=0\)
\(x-\frac{5}{2}=0\)
\(x=\frac{5}{2}\)( chọn )
Vậy \(x=\frac{5}{2}\)
a) |2x - 5| + |2,5 - x| = 0
2x - 5 = 0 hoặc 2,5 - x = 0
2x = 0 + 5 -x = 0 - 2,5
2x = 5 -x = -2,5
x = 2,5 x = 2,5
=> x = 2,5
b) |x - 1,5| + |x + 3| = 0
x - 1,5 = 0 hoặc x + 3 = 0
x = 0 + 1,5 x = 0 - 3
x = 1,5 x = -3
=> x = 1,5 hoặc x = -3
c) (5x - 2)2 = 1
(5x - 2)2 = 12
5x - 2 = 1; -1
5x - 2 = 1 hoặc 5x - 2 = -1
5x = 1 + 2 5x = -1 + 2
5x = 3 5x = 1
x = 3/5 x = 1/5
=> x = 3/5 hoặc x = 1/5
d) (4x - 1)3 + 7 = -20
(4x - 1)3 = -20 - 7
(4x - 1)3 = -27
(4x - 1)3 = (-3)3
4x - 1 = -3
4x = -3 + 1
4x = -2
x = -2/4 = -1/2
Từ x + y + 1 = 0
=> x + y = -1
B = x2(x + y) - y2(x + y) + x2 - y2 + 2(x + y) + 3
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y) + 3
= (x2 - y2)(x + y + 1) + 2(x + y) + 3
- Thay x + y + 1 = 0 ; x + y = -1 vào B , ta có:
=> B = (x2 - y2).0 + 2.(-1) + 3
= -2 + 3 = 1
Vậy B = 1 khi x + y + 1 = 0
2x + 2y = 2x+y
<=> 2x(1-2y)-(1-2y)=-1
<=> (2x-1)(2y-1)=1
Đến đây xét 2 TH là ra :)))
(x+1,5)2+(y-2,5)2=0
=>\(\left\{{}\begin{matrix}\left(x+1,5\right)^2=0\\\left(y-2,5\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
Vậy x=-1,5; y=2,5
Ta thấy (x + 1.5)2 \(\ge\) 0 ; (y - 2.5)2 \(\ge\) 0
Vậy để (x + 1.5)2 + (y - 2.5)2 = 0 thì
(x + 1.5)2 = 0 ; (y - 2.5)2 = 0
=> x + 1.5 = 0 ; y - 2.5 = 0
=> x = -1.5 ; y = 2.5