Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Tìm x,y thuộc Z biết : 25-y2=8.(x-2009)2
b,Tìm x,y thuộc N biết : (2008.x+3y+1).(2008x+2008x+y)=225
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge\left|x-2014+2016-x\right|+0=\left|-2\right|+0=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x=2015\\x\le2016\end{matrix}\right.\Rightarrow x=2015\)
Vậy \(MIN_A=2\) khi x = 2015
b, Ta có: \(-y^2\le0\Rightarrow25-y^2\le25\)
\(\Rightarrow8\left(x-2015\right)^2\le25\)
\(\Rightarrow\left(x-2015\right)^2< 4\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2015\right)^2=0\\\left(x-2015\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2015\\x-2015=\pm1\end{matrix}\right.\)
+) Xét \(x=2015\Rightarrow y=\pm5\) ( t/m )
+) Xét \(x=1\Rightarrow y\notin Z\) ( loại )
+) Xét \(x=-1\Rightarrow y\notin Z\) ( loại )
Vậy x = 2015 và \(y=\pm5\)
25-y2= 8 (x-2015)2
=> 8(x-2015)2+ y2 =25 (1)
Vì y2 lớn hơn hoặc bằng 0 với mọi y
8(x-2015)2 lớn hơn hoặc bằng 0 với mọi x
=> 8(x-2015)2 lớn hơn hoặc bằng 25
=> (x-2015)2 > hoặc bằng \(\dfrac{25}{8}\)
=>( x-2015)2 = 1 thay vào (1) => y2 = 17 ( loại)
hoặc (x-2015)2 = 0 thay vào (1) => y2 = 25 => yϵ { -5; 5}
=> x= 2015
Vậy x= 2015 ; y=5
hoặc x= 2015 ; y = -5
a,Tìm x,y thuộc Z biết : 25-y^2=8(x-2009)^2
b,Tìm x,y thuộc N biết : (2008x+3y+1).(2008x+2008x+y)=225
a) Hình tròn tâm O,bán kính 3cm
a) Hình tròn tâm O,bán kính 3cm
a) Hình tròn tâm O,bán kính 3cm
Vì x,y, thuộc Z, ta có:
\(4.\left(x-2016\right)^2\ge0\Rightarrow25-y^2\ge0\Rightarrow25\ge y^2\Rightarrow y^2\in\left\{0;1;4;9;16;25\right\}\)
\(\Rightarrow25-y^2\in\left\{25;24;23;16;9;0\right\}\)
Mà \(4.\left(x-2016\right)^2⋮4\Rightarrow25-y^2⋮4\Rightarrow25-y^2\in\left\{24;16;0\right\}\)
đến đây tự làm tiếp ha :3
phương trình bậc hai với hai biến x và y. Ta có thể giải nó bằng cách đặt (y = 5\cos{\theta}) (vì (|y| \leq 5)), từ đó suy ra (x = 2016 + \frac{5}{2}\tan{\theta}). Vì (x, y \in Z) nên (\tan{\theta}) phải là một số hữu tỉ. Ta có thể tìm các giá trị của (\theta) sao cho (\tan{\theta}) là một số hữu tỉ, từ đó suy ra các giá trị tương ứng của (x) và (y).