Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) /x-2/ nhỏ hơn hoặc bằng 2
vì /a/ \(\ge\)0
mà /x-2/\(\le\)2
\(\Rightarrow\)/x-2/={0;1;2}
Nếu /x-2/=0
x-2 =0
\(\Rightarrow\)x=2
Nếu /x-2/=1
x-2 =1
\(\Rightarrow\)x=3
Nếu /x-2/=2
x-2 =2
\(\Rightarrow\)x=4
Vì x\(\in\)Z nên x={2;3;4}
b) /x-3/ nhỏ hơn hoặc bằng 0
Vì /a/\(\ge\)0
mà /x-3/\(\le\)0
nên /x-3/=0
x-3 =0
\(\Rightarrow\)x=3
1) Giải theo cách lớp 8 nhé:
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng.
(x + y)² >= 4xy
(y + z)² >= 4yz
(x + z)² >= 4xz
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z²
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0)
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0.
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*)
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0
<=> a - b + b - c + c - a = 0
<=> 0 = 0 (1)
Ta có:\(\hept{\begin{cases}\left|x-3\right|\ge0\\\left|6+2y\right|\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left|x-3\right|^{2014}\ge0\\\left|6+2y\right|^{2015}\ge0\end{cases}\Rightarrow}\left|x-3\right|^{2014}+\left|6+2y\right|^{2015}\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-3\right|^{2014}=0\\\left|6-2y\right|^{2015}=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}}\)
ta có:|x^2-4|>0
|y+2015|>0
|z-37|>0
=>|x^2-4|+|y+2015|+|z-37|>0
mà theo đề:|x^2-4|+|y+2015|+|z-37|<0
=>|x^2-4|=|y+2015|=|z-37|=0
+)x^2-4=0=>x^2=4=>x=+2
+)y+2015=0=>y=-2015
+)z-37=0=>z=37
vậy..
tick nhé
a) Vì x2+2>0 nên để (x2+2).(x+3)>0 thì x+3>0
=> x>-3
b)|7x-2|\(\le\)19
Xét 0\(\le\)|7x-2|\(\le\)19
=> 0\(\le\)7x-2\(\le\)19
=>1\(\le\)x\(\le\)2 (1)
Xét |7x-2|<0
=>2-7x<0
=> x>0 (2)
Từ (1) và (2) ta có x\(\in\){1,2}
a) Vì \(x^2\ge0\Rightarrow x^2+2\ge2\)
\(\Rightarrow\left(x^2+2\right).\left(x+3\right)>0\Leftrightarrow x+3>0\Leftrightarrow x>-3\)
Vậy với mọi x thuộc Z thỏa mãn x> 3 thì ( x2 +2 ) ( x+ 3 ) >0
b) \(\left|7x-2\right|\le19\) mà \(\left|7x-2\right|\ge0\) và x thuộc Z nên :
\(\left|7x-2\right|=0;1;2;3;4;5;......;19\)
Bn tự làm tiếp nhé!
Vì |x-20| và |y+x-1| đều >=0 => |x-20|+|y+x-1| >=0
Mà |x-20| + |y+x-1| < = 0 => |x-20| + |y+x-1| = 0 khi x-20 = 0 và y+x-1 = 0
<=> x=20 ; y = -19
Vậy ...........
k mk nha
Ta có:\(\left|x-20\right|+\left|y+x-1\right|\)< hoặc = 0
mà giá trị tuyệt đối của một số lớn hơn hoặc bằng 0
=> \(\left|x-20\right|+\left|y+x-1\right|=0\)
Vậy \(x-20=0\)
\(20+0=x\)
\(x=20\)
và \(y+x-1=0\)thay x = 20, ta có:
\(y+20-1=0\)
\(y=0-20+1\)
\(y=-20+1\)
\(y=-19\)
Vậy \(x=20;y=-19\)