\(5x-2\sqrt{x}\left(y+2\right)+y^2+1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

Điều kiện: \(x\ge0\)

Ta có: \(5x-2\sqrt{x}\left(y+2\right)+y^2+1=0\)

   \(\Leftrightarrow4x+x-2y\sqrt{x}-4\sqrt{x}+y^2+1=0\)

   \(\Leftrightarrow4x-4\sqrt{x}+1+x-2y\sqrt{x}+y^2=0\)

   \(\Leftrightarrow\left(2\sqrt{x}-1\right)^2+\left(\sqrt{x}-y\right)^2=0\)

   \(\Leftrightarrow2\sqrt{x}-1=0\) và  \(\sqrt{x}-y=0\)

   \(\Leftrightarrow\sqrt{x}=\frac{1}{2}\) và  \(y=\sqrt{x}\) 

   \(\Leftrightarrow x=\frac{1}{4}\) và  \(y=\frac{1}{2}\)

 

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

 ĐK: x ≥ 0 
pt <=> 4x - 4√x +1 + x - 2√x .y + y^2 = 0 
<=> (2√x -1)² + (√x -y)² = 0 
(a² + b² = 0 <=> a và b bằng 0) 
<=> hệ 2√x -1 = 0, √x -y = 0 
<=> x = 1/4, y =1/2 (thỏa mãn) 

KL: x=1/4, y = 1/2 
(đây là giải Trên R, còn trên C thì giải khác)

21 tháng 3 2016

o trong cau hoi tuong tu co day anh .em nghi vay thoi chu em chang biet

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

29 tháng 10 2018

biết làm rồi

30 tháng 10 2018

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!

29 tháng 9 2018

\(\left(x+1\right)\left(y+1\right)=2\)

\(\Leftrightarrow x=\frac{1-y}{1+y}\)

\(P=\sqrt{x^2+y^2-\sqrt{2\left(x^2+1\right)\left(y^2+1\right)}+2}+xy\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-\sqrt{2\left(\left(\frac{1-y}{1+y}\right)^2+1\right)\left(y^2+1\right)}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{1-y}{1+y}\right)^2+y^2-2.\frac{y^2+1}{y+1}+2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\sqrt{\left(\frac{y^2+1}{y+1}\right)^2}+\left(\frac{1-y}{1+y}\right)y\)

\(=\frac{y^2+1}{y+1}+\left(\frac{1-y}{1+y}\right)y=1\) 

21 tháng 6 2017

\(pt\Leftrightarrow y^2-2\sqrt{x}y+\left(5x-4\sqrt{x}+1\right)=0\)

\(\Delta'=\left(\sqrt{x}\right)^2-\left(5x-4\sqrt{x}+1\right)=-4x+4\sqrt{x}-1=-\left(2\sqrt{x}-1\right)^2\)

Do \(-\left(2\sqrt{x}-1\right)^2\le0\Rightarrow\)Để pt có nghiệm thì \(2\sqrt{x}-1=0\Rightarrow x=\frac{1}{4}\)

Khi đó \(y^2-y+\frac{1}{4}=0\Rightarrow y=\frac{1}{2}\)

Vậy \(\left(x;y\right)=\left(\frac{1}{4};\frac{1}{2}\right)\)