Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\) (Vì \(x^2+1>0\))
\(\Leftrightarrow x=-\frac{3}{2}\)
\(2x^3+3x^2+2x+3=0\)
\(\Rightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Rightarrow\left[2x.\left(x^2+1\right)\right]+\left[3.\left(x^2+1\right)\right]=0\)
\(\Rightarrow\left(x^2+1\right)\left(3+2x\right)=0\)
Suy ra:\(\begin{cases}x^2+1=0\\3+2x=0\end{cases}\)\(\Rightarrow\begin{cases}x\in\varnothing\\x=\frac{-3}{2}\end{cases}\)
Vậy \(x=-\frac{3}{2}\)
Tuyển " sư phụ "............................~~ K thành công !!!
câu a hình như sai, đúng ra phải là 2x^2 chứ nhỉ, theo đề tính ra thì thừa 2x
câu b nhỏ nhất = 2014, cần cách làm ko z
\(B=-\left(x^2-2xy+4y^2-10y+8\right)\)
\(=-\left(x^2-2xy+y^2+3y^2-10y+\dfrac{25}{3}-\dfrac{1}{3}\right)\)
\(=-\left(x-y\right)^2-3\left(y-\dfrac{5}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\forall x,y\)
Dấu '=' xảy ra khi x=y=5/3
\(2x^2+2y^2+2xy-4x+4y+8=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\begin{cases}x+y=0\\x-2=0\\y+2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2\\y=-2\end{cases}\)
2x2 + 2y2 + 2xy - 4x + 4y + 8 = 0
<=> x2 + x2 + y2 + y2 +2xy -4x +4y + 4 + 4 = 0
<=> (x2 -4x + 4)+ (y2 +4y + 4) + (x2 + 2xy + y2) =0
<=> (x - 2)2 + (y + 2)2 + (x + y)2 =0
Vì (x - 2)2 >= 0 với mọi x
(y + 2)2 >= 0 với mọi y
(x + y)2 >= 0 với mọi x, y
mà (x - 2)2 + (y + 2)2 + (x + y)2 = 0
=> (x - 2)2 = 0
(y + 2)2 = 0
(x + y)2 = 0
=> x - 2 = 0
y + 2 = 0
x + y = 0
=> x = 2
y = -2
Vậy x = 2; y = -2
\(B=5-x^2+2x-4y^2-4y\)
\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\)
Vì: \(-\left(x-1\right)^2-\left(2y+1\right)^2\le0\)
=> \(-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra khi \(\begin{cases}x-1=0\\2y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}\)
Vậy GTLN của B là 7 khi \(x=1;y=-\frac{1}{2}\)
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=\left(x^2+2xy+2x+y^2+2y+1\right)+\left(y^2-6y+9\right)+2006\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge2006\)
\(\Rightarrow A\ge2006\)
Dấu = khi \(\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+1=0\\y-3=0\end{cases}\)
\(\Rightarrow\begin{cases}x+y+1=0\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x+3+1=0\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x=-4\\y=3\end{cases}\)
Vậy MinA=2006 khi \(\begin{cases}x=-4\\y=3\end{cases}\)
Ta có : \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2+y^2+1-2xy+2y-2x\right)-\left(3y^2-12y+12\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}x-y-1=0\\y-2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=3\\y=2\end{cases}\)
Vậy Min B = 5 \(\Leftrightarrow\begin{cases}x=3\\y=2\end{cases}\)
thanks you