Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x^{2018}+|x-1|\right|=x^{2018}+2404\)
\(\Leftrightarrow x^{2018}+\left|x-1\right|=x^{2018}+2404\)
\(\Leftrightarrow\left|x-1\right|=2404\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2404\\x-1=-2404\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2405\\x=-2403\end{cases}}}\)
\(|x^{2018}+|x-1||=x^{2018}+2404\)
\(\Leftrightarrow\orbr{\begin{cases}x^{2018}+|x-1|=-x^{2018}-2404\\x^{2018}+|x-1|=x^{2018}+2404\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-\left(2x^{2018}+2404\right)\left(l\right)\\|x-1|=2404\left(n\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2404\\x-1=2404\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2403\\x=2405\end{cases}}}\)
V...
\(\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)
Ta thấy: \(x^{2018}\ge0\);\(\left|x-1\right|\ge0\)\(\Rightarrow x^{2018}+\left|x-1\right|\ge0\)
\(\Rightarrow\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)
\(\Leftrightarrow x^{2018}+\left|x-1\right|=x^{2018}+2404\)
\(\left|x-1\right|=2404\)
\(\Rightarrow\orbr{\begin{cases}x-1=2404\\x-1=-2404\end{cases}}\Rightarrow\orbr{\begin{cases}x=2405\\x=-2403\end{cases}}\)
Vậy \(x\in\left\{2405;-2403\right\}\)
Ta có: \(N\left(x\right)=x^{2017}-2018x^{2016}+2018x^{2015}-...-2018x^2+2018x-1\)
\(=x^{2017}-2018\left(x^{2016}-x^{2015}+...+x^2-x\right)-1\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018\left(2017^{2016}-2017^{2015}+...+2017^2-2017\right)-1\)
Đặt \(A=2017^{2016}-2017^{2015}+...+2017^2-2017\)
\(\Rightarrow2017A=2017^{2017}-2017^{2016}+...+2017^3-2017^2\)
\(\Rightarrow2018A=2017^{2017}-2017\)
\(\Rightarrow A=\dfrac{2017^{2017}-2017}{2018}\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018.\dfrac{2017^{2017}-2017}{2018}-1\)
\(=2017^{2017}-\left(2017^{2017}-2017\right)-1\)
\(=2017^{2017}-2017^{2017}+2017-1\)
\(=2016\)
Vậy N(2017) = 2016
\(\left|x-2018\right|+x=2018\)
\(\Rightarrow\left|x+2018\right|=2018-x\)
\(\Rightarrow x+2018\le0\)
\(\Rightarrow x\le-2018\)
Vậy \(x\in R;x\le-2018\)
\(\left|x-2018\right|+x=2018\)
\(\Rightarrow\left|x-2018\right|=2018-x\)
\(\Rightarrow x\le2018\)
Vậy ..........
\(|x^{2018}+|x+1||=x^{2018}+2404\)
\(\Rightarrow x^{2018}+\left|x+1\right|=x^{2018}+2404\)
\(\Rightarrow\left|x+1\right|=2404\)
\(\Rightarrow\orbr{\begin{cases}x+1=2404\\x+1=-2404\end{cases}\Rightarrow}\orbr{\begin{cases}x=2403\\x=-2405\end{cases}}\)