K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

a) (x + 3)2 - (x - 2)2 = 2x

=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x

=> 5(2x + 1) = 2x

=> 10x + 5 = 2x

=> 10x - 2x = -5

=> 8x = -5

=> x = -5/8

b) 7x(x - 2) = x - 2

=> 7x(x - 2) - (x - 2) = 0

=> (7x - 1)(x - 2) = 0

=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)

c) 8x3 - 12x2 + 6x - 1 = 0

=> (2x - 1)3 = 0

=> 2x - 1 = 0

=> 2x = 1

=> x = 1/2

16 tháng 8 2019

d) \(4x^2-9-x\left(2x-3\right)=0\)

\(\Leftrightarrow4x^2-9-2x^2+3x=0\)

\(\Leftrightarrow2x^2+3x-9=0\)

\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)

16 tháng 8 2019

e) \(x^3+5x^2+9x=-45\)

\(\Leftrightarrow x^3+5x^2+9x+45=0\)

\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

a)\(7x\left(x-2\right)=\left(x-2\right)\)

\(\Leftrightarrow7x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(7x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7x-1=0\\x-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=2\end{matrix}\right.\)

b)\(4x^2-9-x\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x+3-x\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-3\end{matrix}\right.\)

c)\(x^3+5x^2+9x=-45\)

\(\Leftrightarrow x^3+9x+5x^2+45=0\)

\(\Leftrightarrow x\left(x^2+9\right)+5\left(x^2+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2+9\right)=0\)

Dễ thấy: \(x^2+9\ge 9 >0\forall x\)

\(\Rightarrow x+5=0\Rightarrow x=-5\)

d,e tương tự

AH
Akai Haruma
Giáo viên
31 tháng 8 2020

Lời giải:

a) $8x^3-12x^2+6x-1=0$

$\Leftrightarrow (2x)^3-3(2x)^2.1+3.2x.1^2-1^3=0$

$\Leftrightarrow (2x-1)^3=0$

$\Leftrightarrow 2x-1=0\Leftrightarrow x=\frac{1}{2}$
b)

\(4x^2-9-x(2x-3)=0\)

$\Leftrightarrow (2x-3)(2x+3)-x(2x-3)=0$

$\Leftrightarrow (2x-3)(2x+3-x)=0$

$\Leftrightarrow (2x-3)(x+3)=0$

$\Rightarrow 2x-3=0$ hoặc $x+3=0$

$\Leftrightarrow x=\frac{3}{2}$ hoặc $x=-3$

c)

\(x^3+5x^2+9x=-45\)

\(\Leftrightarrow (x^3+5x^2)+(9x+45)=0\)

$\Leftrightarrow x^2(x+5)+9(x+5)=0$

$\Leftrightarrow (x+5)(x^2+9)=0$

Vì $x^2+9>0$ với mọi $x$ nên $x+5=0\Leftrightarrow x=-5$

d)

$x^3-6x^2-x+30=0$

$\Leftrightarrow x^3-3x^2-3x^2+9x-10x+30=0$

$\Leftrightarrow x^2(x-3)-3x(x-3)-10(x-3)=0$

$\Leftrightarrow (x-3)(x^2-3x-10)=0$

$\Leftrightarrow (x-3)(x^2+2x-5x-10)=0$

$\Leftrightarrow (x-3)[x(x+2)-5(x+2)]=0$

$\Leftrightarrow (x-3)(x+2)(x-5)=0$

$\Rightarrow x=3; x=-2$ hoặc $x=5$

g)

$x^2+16=10x$

$\Leftrightarrow x^2-10x+16=0$

$\Leftrightarrow x^2-10x+25-9=0$

$\Leftrightarrow (x-5)^2-3^2=0\Leftrightarrow (x-5-3)(x-5+3)=0$

$\Leftrightarrow (x-8)(x-2)=0$

$\Rightarrow x=8$ hoặc $x=2$

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3