Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\sqrt{2x+3}=1\)
\(2x+3=1\)
\(2x=1-3\)
\(2x=-2\)
\(x=-\frac{2}{2}\)
\(x=-1\)
b.
\(\left(3x-1\right)^2-25=0\)
\(\left(3x-1\right)^2=25\)
\(\left(3x-1\right)^2=\left(\pm5\right)^2\)
\(3x-1=\pm5\)
TH1:
\(3x-1=5\)
\(3x=5+1\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
TH2:
\(3x-1=-5\)
\(3x=-5+1\)
\(3x=-4\)
\(x=-\frac{4}{3}\)
Vậy \(x=2\) hoặc \(x=-\frac{4}{3}\)
c.
\(\left(2x+4\right)\left(x^2+1\right)\left(x-2\right)=0\)
TH1:
\(2x+4=0\)
\(2x=-4\)
\(x=-\frac{4}{2}\)
\(x=-2\)
TH2:
\(x^2+1=0\)
\(x^2=-1\)
mà \(x^2\ge0\) với mọi x
=> loại
TH3:
\(x-2=0\)
\(x=2\)
Vậy \(x=2\) hoặc \(x=-2\)
\(a.\)\(=>2x+3=1\)\(=>2x=-2\)\(=>x=-1\)
\(b.\)\(=>\left(3x-1\right)^2=25\)\(=>\left(3x-1\right)^2=5^2=>3x-1=5=>3x=6=>x=2\)
\(c.\)\(=>2x+4=0\)hoac \(x^2+1=0\)hoac \(x-2=0\)
=> * 2x=4 => x= 2
* x^2=-1=> x=-1
* x = 2
\(=>x\in\left(2;-1\right)\)
a) (x+2) + (x+3) + (x+5) = 25
3x + 10 = 25
3x = 15
x = 5
b) 62 - 3.(x+2) = 52.2
62 - 3.(x+2) = 50
3.(x+2) = 12
x+2 = 4
x = 2
c) 25 - (2x+3) = 16
25 - 2x - 3 = 16
22 - 2x = 16
2x =6
x = 3
a) \(\left|3-2x\right|+\frac{3}{4}=\left|-2\frac{3}{4}\right|\)
⇔ | 3 - 2x | + 3/4 = 11/4
⇔ | 3 - 2x | = 8/4 = 2
⇔ \(\orbr{\begin{cases}3-2x=2\\3-2x=-2\end{cases}}\text{⇔}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{5}{2}\end{cases}}\)
b) 2x+2 - 2x = 96
⇔ 2x( 22 - 1 ) = 96
⇔ 2x.3 = 96
⇔ 2x = 32
⇔ 2x = 25
⇔ x = 5
c) ( 2x + 5 )3 = -27
⇔ ( 2x + 5 )3 = (-3)3
⇔ 2x + 5 = -3
⇔ 2x = -8
⇔ x = -4
a. \(\left|3-2x\right|+\frac{3}{4}=\left|-2\frac{3}{4}\right|\)
\(\Rightarrow\left|3-2x\right|+\frac{3}{4}=\left|-\frac{11}{4}\right|\)
\(\Rightarrow\left|3-2x\right|+\frac{3}{4}=\frac{11}{4}\)
\(\Rightarrow\left|3-2x\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}3-2x=2\\3-2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{5}{2}\end{cases}}\)
b. 2x+2 - 2x = 96
<=> 2x . 22 - 2x = 96
<=> 2x ( 22 - 1 ) = 96
<=> 2x . 3 = 96
<=> 2x = 32 = 25
<=> x = 5
c. ( 2x + 5 )3 = - 27
<=> ( 2x + 5 )3 = ( - 3 )3
<=> 2x + 5 = - 3
<=> 2x = - 8
<=> x = - 4
a không có tích để tìm x.
b)\(\frac{1}{12}.x-75\%.x=-1\frac{2}{3}\)
\(x.\left(\frac{1}{12}-\frac{9}{12}\right)=\frac{-1}{3}\)
\(x.\frac{-2}{3}=\frac{-1}{3}\)
\(x=\frac{-1}{3}:\frac{-2}{3}\)
\(x=\frac{-1}{-2}\)
c)\(\left(\frac{-2x}{5}+1\right):-5=\frac{-1}{25}\)
\(\left(\frac{5-2x}{5}\right)=\frac{-1}{25}.\frac{1}{-5}\)
\(\left(\frac{5-2x}{5}\right)=\frac{-1}{-125}\)
\(\frac{2x}{5}=\frac{-1}{-125}-1\)
\(\frac{2x}{5}=\frac{-126}{-125}\)
\(\frac{x.2}{5}=\frac{-126}{-125}\)
\(x=-63\)
Mới cuối cấp I thôi chị ơi.
Lần sau đăng gộp làm cho dễ nhé !
\(2x-3=x+\frac{1}{2}\Leftrightarrow x=3+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{6}{2}+\frac{1}{2}=\frac{7}{2}\)
@Hoc tot@
1. \(\frac{x+2}{5}=\frac{3x-2}{2}\)
=> 2(x + 2) = 5(3x - 2)
=> 2x + 4 = 15x - 10
=> 2x - 15x = -10 - 4
=> -13x = -14
=> x = 13/4
Bài 1: \(\frac{x+2}{5}=\frac{3x-2}{2}\)
<=> 2x+4=15x-10
<=> 2x-15x=-10-4
<=> -13x=-14
<=> x=\(\frac{14}{13}\)
Bài 2: xy+2x+y=0
<=> (xy+2x)+(y+2)=2
<=> x(y+2)+(y+2)=2
<=> (y+2)(x+1)=2
Vì x,y nguyên => y+2; x+1 nguyên => y+2; x+1 nguyên
=> y+2; x+1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
ta có bảng
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
y+2 | -1 | -2 | 2 | 1 |
y | -3 | -4 | 0 | -1 |
1) \(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(2x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2=\left(\frac{-3}{5}\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=\frac{-3}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=\frac{-4}{5}\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{-2}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{5}\\y=\frac{-2}{5}\end{array}\right.\)
2) Ta có:
29 + 299
= 29.(1 + 290)
= 512.(1 + 280.210)
= 512.[1 + (220)4.1024]
= 512.[1 + (...26)4.2014)]
= 512.[1 + (...26).1024]
= 512.[1 + (...24)]
= 512.(...25)
= 128.4.(...25)
= 128.(...00)
= (...00) \(⋮100\)
Chứng tỏ \(2^9+2^{99}⋮100\)
Bài 1:
\(\left(2x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow2x+\frac{1}{5}=\pm\frac{3}{5}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+\frac{1}{5}=\frac{3}{5}\\2x+\frac{1}{5}=-\frac{3}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}2x=\frac{2}{5}\\2x=-\frac{4}{5}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=-\frac{2}{5}\end{array}\right.\)
Vậy ........
Bạn lưu ý lần sau ghi đầy đủ yêu cầu đề bài.
Đề bài: Tìm nghiệm của đa thức.
Lời giải:
a/ $f(x)=2x-5=0$
$\Rightarrow 2x=5\Rightarrow x=\frac{5}{2}$
b/
$f(x)=x^2-25=0$
$\Rightarrow x^2=25=5^2=(-5)^2$
$\Rightarrow x=\pm 5$
c/
$f(x) = x^2+25=0$
$\Rightarrow x^2=-25<0$ (vô lý do $x^2\geq 0$ với mọi $x$)
Vậy đa thức này không có nghiệm.
d/
$f(x)=(x^2+1)(x-3)=0$
$\Rightarrow x^2+1=0$ hoặc $x-3=0$
$\Rightarrow x^2=-1$ (vô lý do $x^2\geq 0$ với mọi $x$) hoặc $x=3$ (chọn)
Vậy đa thức có nghiệm $x=3$
e/
$f(x)=x^2+x+1=(x^2+x+\frac{1}{4})+\frac{3}{4}$
$=(x+\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}>0$ với mọi $x$
Do đó $f(x)\neq 0$ với mọi $x$
$\Rightarrow$ đa thức $f(x)$ không có nghiệm.
\(\frac{25}{5^x}=\frac{1}{125}\Rightarrow25.125=5^x.1\)
\(3125=5^x\)
\(5^5=5^x\)
\(\Rightarrow x=5\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)