Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{2014}{1}+\frac{2015}{2}+...+\frac{4026}{2013}=1+1+...+1+\left[\left(\frac{2014}{1}-1\right)+\left(\frac{2015}{2}-1\right)+...+\left(\frac{4026}{2013}-1\right)\right]\)
\(=2013+\left(\frac{2013}{1}+\frac{2013}{2}+...+\frac{2013}{2013}\right)=2013+2013\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)\) (1)
Ta kết hợp (1) và đề
=>\(\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)x+2013=2013+2013\left(1+\frac{1}{2}+...+\frac{1}{2013}\right)\)
=> x=2013
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x+2013=\frac{2014}{1}+\frac{2015}{2}+...+\frac{4025}{2012}+\frac{4026}{2013}\)
\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x=\left(\frac{2014}{1}-1\right)+\left(\frac{2015}{2}-1\right)+...+\left(\frac{4025}{2012}-1\right)+\left(\frac{4026}{2013}-1\right)\)
\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x=\frac{2013}{1}+\frac{2013}{2}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
\(\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)x=2013\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
\(\Rightarrow x=\frac{2013\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}=2013\)
Vậy x = 2013 thoả mãn đề bài.
có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1
=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)
vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015
x=2015
Ta có
\(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
\(\Rightarrow\frac{A}{B}=\frac{\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}\right)+\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026}\right)}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
\(\Rightarrow\frac{A}{B}=\frac{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}+\frac{\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
\(\Rightarrow\frac{A}{B}=1+\frac{\frac{1}{2}+\frac{1}{4}+....+\frac{1}{4026}}{1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{4025}}\)
Dễ thấy A/B > 1
2013/2014<1
=> \(\frac{A}{B}>\frac{2013}{2014}\)
\(1\dfrac{2013}{2014}\) cơ mà sao lại \(\dfrac{2013}{2014}\)