Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)
2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)
3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)
\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)
ta có : \(\left(3x+2\right)^2\ge0\forall x\) và \(\left(2y-2\right)^2\ge0\forall y\)
\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)
\(\Rightarrow\) phương trình vô nghiệm
a) \(x^2-8x+y^2+6y+25=0\)
\(\left(x-8\right)x+y\left(y+6\right)+25=0\)
\(x^2+y^2+6y+25=8x\)
\(\Rightarrow x=4,y=-3\)
b ) 4x2-4x+9y2 -12y +5
<=> [( 2x )2 - 4x + 1 ] [ (3y) 2 - 12y + 4 )] = 0
<=> ( 2x - 1 )2 + ( 3y - 2 )2 =0 ( Vì (2x -1)2 >=0 , ( 3y - 2 )2 >= 0 )
<=> 2x - 1 = 0 và 3y -2 = 0
<=> x = 1/2 và y = 2/3
\(A=x^2+9x+25\)
\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)
\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)
Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)
b,\(B=4x^2-8x+\frac{21}{2}\)
\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)
\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)
c,\(C=-x^2+2x+\frac{5}{2}\)
\(=-\left(x^2-2x-\frac{5}{2}\right)\)
\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)
\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)
Bài 1.
A = x2 + 9x + 25
= ( x2 + 9x + 81/4 ) + 19/4
= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 19/4 <=> x = -9/2
B = 4x2 - 8x + 21/2
= 4( x2 - 2x + 1 ) + 13/2
= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 13/2 <=> x = 1
C = -x2 + 2x + 5/2
= -( x2 - 2x + 1 ) + 7/2
= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxC = 7/2 <=> x = 1
D = -9x2 - 12x + 27/2
= -9( x2 + 4/3x + 4/9 ) + 35/2
= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x
Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3
=> MaxD = 35/2 <=> x = -2/3
Bài 2.
a) 4x2 + 9y2 + 12x + 12y + 13 = 0
<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0
<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)
=> x = -3/2 ; y = -2/3
b) 16x2 + 4y2 - 8x + 12y + 10 = 0
<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0
<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)
=> x = 1/4 ; y = -3/2
Bài 1:Tìm x,y biết:
a)\(x^2-6x+y^2+10y+34\)
=>\(\left(x^2-2.x.3+3^2\right)+\left(y^2+2.y.5+5^2\right)=0\)
=>\(\left(x-3\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}x-3=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
câu 1
a, 5x - x 2 + 2xy - 5y
= 5x - x 2 + xy + xy - 5y
= ( 5x - 5y ) - ( x2 - xy ) + xy
= 5 ( x-y ) - x(x-y ) + xy
= (5-x) ( x-y) + xy
mik làm dc mỗi câu a !
Ta có: (x^2 + 9y^2 + 4- 6xy -12y+ 4x)+(x^2 -10x+25) =0
(x-3y+2)^2 +(x-5)^2 =0
Vì vế trái luôn luôn lớn hơn hoặc bằng 0 với mọi x,y nên dấu"=" xảy ra khi:
x-3y+2 =0 và x-5=0
5-3y+2 =0 và x=5
y=7/3 và x=5
Vậy x=5 và y=7/3.
Chúc bạn học tốt.
1.
\(x^2\)+\(y^2\)+2y-6x+10=0
=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0
=> (x-3)\(^2\)+(y+1)\(^2\)=0
pt vô nghiệm
4.
=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0
=> (x+4)\(^2\)+(3y-2)\(^2\)=0
pt vô nghiệm
1) \(9x^2+y^2-10y-12x+29=0\)
\(\Leftrightarrow\left(9x^2-12x+4\right)+\left(y^2-10y+25\right)=0\)
\(\Leftrightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\)
ta có : \(\left(3x-2\right)^2\ge0\forall x\) và \(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=5\end{matrix}\right.\)
vậy \(x=\dfrac{2}{3};y=5\)
2) câu này đề sai rồi nha
3) \(x^2+29+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)+9=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9=0\)
ta có : \(\left(x+4\right)^2\ge0\forall x\) và \(\left(3y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9\ge9>0\forall x;y\)
vậy phương trình vô nghiệm