Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)
Tự tìm x,y,z nhé
c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)
(làm tương tự câu b)
d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)
đến đây chắc dễ rồi
e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)
Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1
(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x)
f)
Ta có : \(3x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\) và \(y-x=10\)
Áp dụng tính chát của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{y-x}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow\frac{x}{5}=-5\Rightarrow x=-25\)
\(\Rightarrow\frac{y}{3}=-5\Rightarrow y=-15\)
Vậy \(x=-25;y=-10\)
b ) Ta có : \(2x=3y=5z\)
+ ) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\left(1\right)\)
+ ) \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\left(2\right)\)
Từ ( 1 ) ( 2 ) \(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{5}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15-10+6}=\frac{38}{11}\)
\(\Rightarrow\frac{x}{15}=\frac{38}{11}\Rightarrow x=\frac{570}{11}\)
\(\Rightarrow\frac{y}{10}=\frac{38}{11}\Rightarrow y=\frac{380}{11}\)
\(\Rightarrow\frac{z}{6}=\frac{38}{11}\Rightarrow z=\frac{228}{11}\)
Vậy ....................
a) \(2x=3y\Rightarrow x=\frac{3}{2}y\) hay \(y=\frac{2}{3}x\)
Thay \(x=\frac{3}{2}y\)vào, tA được:
\(3.\left(\frac{3}{2}y\right)+5y=19\)
\(\Leftrightarrow\frac{9}{2}y+5y=19\)
\(\Leftrightarrow y.\left(\frac{9}{2}+5\right)=19\)
\(\Leftrightarrow y.\frac{19}{2}=19\)
\(\Rightarrow y=19:\frac{19}{2}=2\)
\(\Rightarrow x=\frac{3}{2}.2=3\)
Vậy \(\hept{\begin{cases}x=3\\y=2\end{cases}.}\)
b) \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng công thúc dãy tỉ số bằng nhau ta được:
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)
\(\Rightarrow\hept{\begin{cases}x=5.3=15\\y=5.5=25\\z=5.6=30\end{cases}}\)
Vậy \(\hept{\begin{cases}x=15\\y=25\\z=30\end{cases}.}\)
ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{3x}{9}=\frac{5y}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{5y}{10}=\frac{3x+5y}{10+9}=\frac{19}{19}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=1\\\frac{5y}{10}\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(x=3;y=2\)
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)
\(\Rightarrow\frac{x}{3}=5\Rightarrow x=15\)
\(\frac{y}{5}=5\Rightarrow y=25\)
\(\frac{z}{6}=5\Rightarrow z=30\)
Vậy \(x=15;y=25;z=30\)