Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{y}{5}\)
Quy đòng : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)
\(\Leftrightarrow\begin{cases}\frac{x}{8}=1\Rightarrow x=1.8=8\\\frac{y}{12}=1\Rightarrow y=1.12=12\\\frac{z}{15}=1\Rightarrow z=1.15=15\end{cases}\)
Vậy x = 8 ; y = 12 ; z = 15
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2+z^2}{25-9+4}=\frac{40}{20}=2\)
Suy ra:
x = 2 x 5 = 10
y = 2 x 3 = 6
z = 2 x 2 = 4
Hồi trưa mình cx nghĩ cách giống bạn nhưng khi thay vào thì lại ko đúng
Ai giải đc cho 20k. nhanh tay nha, 1 người duy nhất
Sai đề: Sửa \(x-y-x=78\)thành \(x-y+z=78\)
Từ \(\frac{x}{y}=\frac{10}{9}\)\(\Rightarrow\frac{x}{10}=\frac{y}{9}\)(1)
Từ \(\frac{y}{z}=\frac{3}{4}\)\(\Rightarrow\frac{y}{3}=\frac{z}{4}\)\(\Rightarrow\frac{y}{3.3}=\frac{z}{4.3}\)\(\Rightarrow\frac{y}{9}=\frac{z}{12}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60\); \(y=6.9=54\); \(z=12.6=72\)
Vậy \(x=60\); \(y=54\); \(z=72\)
Sửa : \(x-y-z=78\)
Theo bài ra ta có :
\(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9}\)(*)
\(\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\)(**)
Lại có : \(\frac{x}{30}=\frac{y}{27}\)(***)
\(\frac{y}{27}=\frac{z}{36}\)(****)
Từ (*) ; (**) ; (***) ; (****) =)) \(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y-z}{30-27-36}=\frac{78}{-33}\)
Tự thay ...
Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)
a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)
a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x
\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z
\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y
\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z
Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
câu b cách làm giống như câu a
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{z}{5}=2\Rightarrow z=10\)
a) Ta có \(x:2=y:-5.\)
=> \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=14.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;-10\right).\)
k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\) và \(2x+3y-z=186.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)
Mình chỉ làm 2 câu thôi nhé.
Chúc bạn học tốt!
Bạn này riết quá, mình cũng đang bận nữa :(
b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)
Vậy...
c) Xem lại đề nhé.
d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)
Vậy...
e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)
\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)
Vậy...
f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
g) Áp dụng TCDTSBN:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)
\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
Vậy...
h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)
Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)
\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)
Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)
Ta có hệ :
\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)
Vậy...
Cho \(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}.\)Tìm ba số x, y, z biết rằng:
2x + 3y - z = 74
ờm cái này cần phẫu thuật nó tí nha
x/2 = y/3 => x= 2y/3 ; y = 3x/2
y/4 = (2y/3) / (8/3) = 3x/8 = z/5
=> z = 15x/8
thay vào bt ta có 2x + 3.3x/x - 15x/8 = 37x/8 = 74
=> x=16
y= 3x/2 = 24
z= 15x/8 = 30
học tốt
Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Từ: \(x-y-z=0\Rightarrow x-z=y;y-x=-z\) và \(y+z=x\)
Suy ra: \(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\left(x;y;z\ne0\right)\)