Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{4}\)= \(\frac{z}{5}\)và x + y - z = 10
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\); \(\frac{y}{12}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)= \(\frac{x+y-z}{8+12-15}\)= \(\frac{10}{5}\)= 2
\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Vậy x= 16
y= 24
z= 30
d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3
\(\Rightarrow\)\(\frac{x}{3}\)= \(\frac{y}{2}\); \(\frac{x}{7}\)= \(\frac{z}{5}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\); \(\frac{x}{21}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)= \(\frac{7y}{98}\)= \(\frac{5z}{75}\)= \(\frac{3x-7y+5z}{63-98+75}\)= \(\frac{30}{40}\)=\(\frac{3}{4}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)
Vậy x= \(\frac{63}{4}\)
y= \(\frac{21}{2}\)
z= \(\frac{45}{4}\)
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}=\)
\(\frac{3xz-2yz}{37z}=\frac{5yx-3zx}{15x}=\frac{2zy-5xy}{2y}=\frac{3xz-2yz+5yx-3zx+2zy-5xy}{37z+15x+2y}=0\)(t/c dãy tỉ số bằng nhau)
\(\frac{3x-2y}{37}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{5y-3z}{15}=0\Rightarrow5y=3z\Rightarrow\frac{z}{5}=\frac{y}{3}\left(2\right)\)
\(\frac{2z-5x}{2}=0\Rightarrow2z=5x\Rightarrow\frac{x}{2}=\frac{z}{5}\left(3\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=\frac{-4}{1}=-4\)
\(x=-8,y=-12,z=-20\)
https://olm.vn/hoi-dap/question/148595.html
vào đấy tham khảo nhé
^_^
c) \(4x=3y;7y=5z\)và\(2x+3y-z=186\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{15}=\frac{x}{20}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất Bắc Cầu
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2z+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy x=45;y=60;z=84
b) Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+5y+1+7y}{12+5x+4x}=\frac{3+15y}{12+5x+4x}=\frac{3\left(1+5y\right)}{2.3.2+5x+4x}=\frac{1+5y}{4+9x}=\frac{1+5y}{5x}\)<=> 4 + 9x = 5x
....
a/ Từ giả thiêt ta có \(\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{40}\). Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\)
\(\Rightarrow\begin{cases}x=15k\\y=20k\\z=40k\end{cases}\)
Theo đề bài : \(xy=1200\Leftrightarrow15k.20k=1200\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Tới đây dễ rồi nhé :)
b/ \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\Leftrightarrow\frac{1+5y}{5}=\frac{1+7y}{4}\Leftrightarrow\frac{7+35y}{35}=\frac{5+35y}{20}=\frac{7+35y-5-35y}{35-20}=\frac{2}{15}\)
\(\Rightarrow y=-\frac{1}{15}\)
Thay y vào \(\frac{1+3y}{12}=\frac{1+5y}{5x}\) tìm được x = 2
ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15