\(\frac{1}{2}\); y+z=\(\frac{1}{3}\);...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x+y+y+z+z+x=2\left(x+y+z\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}\)

\(\Rightarrow x+y+z=\frac{13}{24}\Rightarrow x=\frac{5}{24};y=\frac{7}{24};z=\frac{1}{24}\)

vậy \(\left(x;y;z\right)=\left(\frac{5}{24};\frac{7}{24};\frac{1}{24}\right)\)

27 tháng 7 2015

x + y + z =( 1/2 + 1/3 + 1/4 ) : 2 

= 13/24

từ đó tính x y z

27 tháng 1 2019

\(\text{Giải}\)

\(\text{Vì: x thuộc N nên: 2x+1 lớn hơn hoặc bằng 1 }\)

\(\Rightarrow12=1.12=12.1=2.6=6.2=3.4=4.3\)

\(\text{tự làm tiếp xét 6TH như thế nhé :)}\)

4 tháng 3 2018

Ta có : 

\(x+y=\frac{1}{2}\)

\(y+z=\frac{1}{3}\)

\(z+x=\frac{1}{4}\)

\(\Rightarrow\)\(x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow\)\(2x+2y+2z=\frac{13}{12}\)

\(\Rightarrow\)\(2\left(x+y+z\right)=\frac{13}{12}\)

\(\Rightarrow\)\(x+y+z=\frac{13}{12}:2\)

\(\Rightarrow\)\(x+y+z=\frac{13}{24}\)

Do đó : 

\(x+y+z=\frac{13}{24}\)

\(\Rightarrow\)\(x=\frac{13}{24}-\left(y+z\right)=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)

\(\Rightarrow\)\(y=\frac{13}{24}-\left(z+x\right)=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)

\(\Rightarrow\)\(z=\frac{13}{24}-\left(x+y\right)=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)

Vậy \(x=\frac{5}{24};y=\frac{7}{24};z=\frac{1}{24}\)

Chúc bạn học tốt ~

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

17 tháng 5 2017

Ta có:

\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)

Ta có :

\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+x}+\frac{1}{z+x}\right)\)

\(=1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(\Rightarrow x+y+z=\frac{3+\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)}{\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}}=\frac{3+\frac{7}{10}}{\frac{2}{5}}=\frac{37}{4}\)

15 tháng 8 2017

Cậu có chắc của lớp 6 không ???

Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\) 

Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)

24 tháng 4 2019

Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si  \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)

14 tháng 5 2017

Câu hỏi của Nguyễn Thị My Na - Toán lớp 6 - Học toán với OnlineMath bạn tham khảo tại đây nha

14 tháng 5 2017

\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)

\(\Rightarrow\frac{x}{6}=\frac{1}{y}+\frac{1}{2}\)

\(\Rightarrow\frac{x}{6}=\frac{2+y}{2y}\)

\(6=2y\Rightarrow y=3\)

\(x=2+3\Rightarrow x=5\)

13 tháng 8 2017

Ta có:

\(x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow2\left(x+y+z\right)=\frac{13}{12}\Leftrightarrow x+y+z=\frac{13}{12}.\frac{1}{2}=\frac{13}{24}\)

\(\cdot x+y=\frac{1}{2}\Leftrightarrow z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)

\(\cdot y+z=\frac{1}{3}\Leftrightarrow x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)

\(\cdot y=\frac{13}{24}-\frac{1}{24}-\frac{5}{24}=\frac{7}{24}\)

Vậy \(x=\frac{5}{24};y=\frac{7}{24};z=\frac{1}{24}\)

13 tháng 8 2017

Ta có: y + z = \(\frac{1}{3}\); z + x = \(\frac{1}{4}\).

=> y lớn hơn x : \(\frac{1}{3}-\frac{1}{4}=\frac{1}{12}\).

x + y = \(\frac{1}{2}\)và  y - x = \(\frac{1}{12}\)=> x = \(\left(\frac{1}{2}-\frac{1}{12}\right):2=\frac{5}{24}\)

=> y = \(\frac{1}{2}-\frac{5}{24}=\frac{7}{24}\)

=> z = \(\frac{1}{4}-\frac{5}{24}=\frac{1}{24}\)