K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

lập bảng cho nành v10; v7\(=\sqrt{10};\sqrt{7}\)

x-vc-v10 -v7 -2 -101 2 v7 v10+vc    
x+v10-0+++++++++++++++    
x+v7---0+++++++++++++    
x+2-----0+++++++++++    
x+1-- --- -0+++++++++    
x-1--  -   -0+          
x-2--  -     -0+        
x-v7--  -     - -0+      
x-v10--  -     - - -0+    
VT+0-0+0-0+0-0+0-0+    
                      
                      

các khoảng x thỏa man la

-v10<x<-v7

-1<x<-2

1<x<2

v7<x<v10

x nguyen

=> x={-3,3}

18 tháng 3 2020

https://olm.vn/hoi-dap/tim-kiem?q=Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:++(x2-1).(x2-4).(x2-7).(x2-10)%3C0&id=153167

22 tháng 12 2015

sao bạn Nguyễn Khắc Vinh trả lời toàn sai mà vẫn được li-ke nhỉ ???

12 tháng 4 2018

\(\orbr{\begin{cases}x^2-1< 0\\x^2-16< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2< 1\\x^2< 16\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 1\\x< \pm4\end{cases}}}\)

8 tháng 3 2018

Ta có:

\(-1\le x\le1;-1\le y\le1;-1\le z\le1\Leftrightarrow x^2;y^2;z^2\le1\) (1)

Trong 3 số \(x;y;z\)có ít nhất 2 số cùng dấu(giả xử là \(x;y\)) ta có: \(xy\ge0\Rightarrow2xy\ge0\)(2)

\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\le x^2+y^2+z^2\)(3)

ta sẽ chứng minh:

\(x^2+y^2+z^2\le2\) ta có: 

\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy\)(từ (2) )

\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right)^2+z^2=\left(-z\right)^2+z^2=2z^2\le2\)(từ (1)  )

\(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right)\)(từ (3) )

14 tháng 3 2018

Ta có:

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

 ..

15 tháng 4 2019

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

 ..

9 tháng 2 2020

avt3105452_60by60.jpg Nam Mô Ki Ni 

10 tháng 2 2020

cbfffffffffffffffffffffffffffffffffffffffsdhnc

10 tháng 2 2020

b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt

6 tháng 6 2016

Đặt a=xy,b=yz,c=zx

Ta có: \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\Rightarrow a^3+b^3+c^3=3abc\Rightarrow\hept{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

  • Nếu a+b+c=0 hay xy+yz+xz=0 thì (x+z)y=-xz

\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{x}\right)\left(1+\frac{z}{x}\right)=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{z+x}{x}\right)=\frac{\left(x+y\right)z}{yz}.\frac{\left(y+z\right)x}{zx}.\frac{\left(x+z\right)y}{xy}\)

\(=\frac{\left(-xy\right)\left(-yz\right)\left(-zx\right)}{zx.xy.yz}=-1\)

  • Nếu a=b=c hay xy=yz=zx =>x=y=z =>B=8
6 tháng 6 2016

=-1 hoặc 8

cách làm SKKN BD HSG toan 8 - Tài liệu text