\(\frac{x^2+y^2}{5}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}=\frac{y^2-x^2+x^2+y^2}{3+5}=\frac{y^2-x^2-x^2-y^2}{3-5}\)

\(\Rightarrow\frac{2y^2}{8}=\frac{-2.x^2}{-2}\Rightarrow\frac{y^2}{4}=x^2\Rightarrow y^2=4x^2\)

\(x^{10}.y^{10}=1024\)

\(\Rightarrow x^{10}.\left(y^2\right)^5=1024\)

\(\Rightarrow x^{10}.\left(4x^2\right)^5=1024\)

\(\Rightarrow x^{10}.4^5.x^{10}=1024\)

\(\Rightarrow x^{20}=\frac{1024}{4^5}=\frac{1024}{1024}=1\)

\(\Rightarrow x=1\) hoặc x = -1

=> y^2 = 4.1^2 hoặc y^2 = 4.(-1)^2

=> y^2 = 4 hoặc y^2 = 4

=> y=2 hay y =-2   hoặc y = -2hay y=2

Vậy (x;y) bằng (1;-2) hoặc (1;2) hoặc (-1;2) hoặc (-1;-2)

13 tháng 8 2020

Ấy chết nhầm dòng cuối r :((

Có 4 cặp (x;y) nhé! Thêm 2 cặp : (-1;2) và (-1;-2)

5 tháng 11 2017

Ví dụ : Tìm tập hợp các ước của 24

Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }

Ta có thể tìm các ước của a bằng cách lần lượt chia a cho

các số tự nhiên từ 1 đến a để xét xem a chia hết cho những

số nào ,khi đó các số ấy là ước của a

21 tháng 10 2016

\(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}\)\(\Rightarrow\)\(5.\left(y^2-x^2\right)=3.\left(x^2+y^2\right)\)

                                       \(\Rightarrow\)\(5y^2-5x^2=3x^2+3y^2\)

                                       \(\Rightarrow\)\(2y^2=8x^2\)

                                       \(\Rightarrow y^2=4x^2\)

                                      \(\Rightarrow\)\(y^{10}=1024.x^{10}\)

Mà \(x^{10}.y^{10}=1024\Rightarrow1024.x^{10}.x^{10}\)\(=1024\)

                                  \(\Rightarrow\)  \(x^{20}=1\)       \(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)  

Với x=1 thì :\(y^{10}=1024\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)    

Với x=-1 thì \(y^{10}=1024\)\(\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)

Vậy có 4 bộ \(\left(x,y\right)\)Thỏa mãn là \(\left(1;2\right);\left(1;-2\right);\left(-1;2\right);\left(-1;-2\right)\)

21 tháng 10 2016

x.y=+-2

y^2/4=x^2

2x=+-y

=> y^2=4

y=+-2; x=+-1

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)