Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt\(\frac{x}{3}=\frac{y}{7}=k\)
\(\Rightarrow\frac{x}{3}.\frac{y}{7}=k.k\Rightarrow\frac{xy}{21}=k^2\Rightarrow\frac{84}{21}=k^2\Rightarrow4=k^2\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Khi k = 2 thì: \(\frac{x}{3}=2\Rightarrow x=6;\frac{y}{7}=2\Rightarrow y=14\)
Khi k = -2 thì: \(\frac{x}{3}=-2\Rightarrow x=-6;\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy: (x;y) = {(6; 14); (-6; -14)}
Đặt \(\frac{x}{3}=\frac{y}{7}=k\left(k>0\right)\)
=> x= 3k , y= 7k
Theo đề bài ta có : xy= 8 => 3k.7k= 84 => 21k2= 84 => k2= 4 => k= 2
=> x= 6, y= 14
a,
ta có
\(\frac{x}{-3}=\frac{2x}{2.\left(-3\right)}=\frac{2x}{-6}\)
\(\frac{y}{2}=\frac{5y}{2.5}=\frac{5y}{10}\)
áp dụng tính chất dãy tỉ số bằng nhau
ta có
\(\frac{2x}{-6}=\frac{5y}{10}=\frac{2x-5y}{-6-10}=-\frac{32}{-16}=2\)
\(\frac{x}{-3}=2=>x=-3.2=6\)
\(\frac{y}{2}=2=>y=4\)
Ta có: xy = 84
=> \(y=\frac{84}{x}\)
=> \(\frac{x}{3}=\frac{\frac{84}{x}}{7}\)
=> \(\frac{x}{3}=\frac{12}{x}\)
=> \(x^2=3.12=36\)
=> \(x=\pm6\)
Khi x = 6
=> \(y=\frac{84}{x}=\frac{84}{6}=14\)
Khi x = -6
=> \(y=\frac{84}{x}=\frac{84}{-6}=-14\)
Theo bài ra ta có: \(\frac{x}{3}=\frac{y}{7}\Rightarrow\frac{x}{3}.\frac{x}{3}=\frac{y}{7}.\frac{y}{7}=\frac{x}{3}.\frac{y}{7}\)
\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{49}=\frac{84}{21}=4\)
\(\Rightarrow x^2=4.9=36\Rightarrow x=\pm6\)
\(\Rightarrow y^2=196=\pm14\)
Vậy \(x=\pm6\)
\(y=\pm14\)
đặt x/3=y/=k(k khác 0) =>x=3k;y=7k
=>x.y=3k.7k=21.k^2=84
=>k^2=4=(2)^2 hoặc(-2)^2
th1:k=2=> x=6;y=14
th2:k=-2 =>x=-6;y=-14
Đặt \(\frac{x}{3}=\frac{y}{7}=k\) ta có :
\(x=3k\) ;\(y=7k\)
Vì \(x.y=84\Rightarrow3k.7k=21k^2=84\)
\(\Rightarrow k^2=4=2^2\)
\(\Rightarrow\orbr{\begin{cases}k=-2\\k=2\end{cases}}\)
+TH1: \(k=-2\Rightarrow\hept{\begin{cases}x=-6\\y=-14\end{cases}}\)
+TH2: \(k=2\Rightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
Vậy (x,y) = {(-6,-14);(6,14)}
Ta có: \(\frac{x}{3}=\frac{y}{7}.\)
=> \(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Có: \(x.y=84\)
=> \(3k.7k=84\)
=> \(21k^2=84\)
=> \(k^2=84:21\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.7=14\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Chúc bạn học tốt!
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
+ Có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k^2=\left(\pm2\right)^2\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Chúc bạn học tốt!
Đặt : x+y/7=x-y/3=k
=) x=7k-y; y=3k+x (k#0)
Ta có : (7k-y)(3k+x)=250 suy ra 7k(3k+x)-(3k+x)y=250
=)21k^2+7kx-3ky+xy=250
Từ đó rút gọn và tính kết quả theo từng trường hợp
a, đặt x/4=k suy ra x=4k,y/7=k suy ra y=7k thay x=4k, 7=7k vào xy=112 ta có: 4k.7k=112 28.k^2=112 k^2=112:28 k^2=4 k =4,-4 TH1 thay k=4 vào ta có:x=4k suy ra x=4.4=4 y=7k suy ra y=7.4=28 TH2 là tương tự , e và f là tương tự
a) x= 4y/7 thay vao có:
4y,y/7 =112
y.y =196
y = 14
x = 4.14/7 = 8
e) tuong tu
f) x2/25 = y2/16
k = 1/9
x = 5/9
y = 4/9
Đặt \(k=\frac{x}{3}=\frac{y}{7}\)
Suy ra : \(k^2=\frac{x}{3}.\frac{y}{7}=\frac{xy}{21}=\frac{84}{21}=4\)
=> k = -2;2
+ k = -2 thì \(\frac{x}{3}=-2\Rightarrow x=-6\)
\(\frac{x}{7}=-2\Rightarrow x=-14\)
+ k = 2 thì : \(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{x}{7}=2\Rightarrow x=14\)
Vậy .............................
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow x=3k;y=7k\)
\(x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\Rightarrow x=3.2=6;y=7.2=14\)
Với \(k=-2\Rightarrow x=3.\left(-2\right)=-6;y=7.\left(-2\right)=-14\)
Vậy ....