K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{x\left(x+1\right):2}=\frac{2001}{2003}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{2003}:2=\frac{2001}{4006}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}=\frac{1}{2003}\)

=> x+1 = 2003

=> x = 2003 - 1

=> x = 2002

12 tháng 7 2015

thank you very much

 

1 tháng 4 2015

= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1) = 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]

=2[1/2-1/(x+1)]= (x-1)/(x+1) = 2001/2003

==> x=2002

17 tháng 4 2020

x=2002

13 tháng 7 2016

có công thức nè bạn

13+23+...+n3=n.(n+1).(2n+1);6

8 tháng 12 2017

giup minh tra loi nha

22 tháng 11 2018

\(\left(x-1\right)\left(x+3\right)=6\)

\(\Rightarrow6⋮\left(x-1\right),\left(x+3\right)\)

\(\Rightarrow\left(x-1\right),\left(x+3\right)\inƯ\left(6\right)\)

\(\RightarrowƯ\left(6\right)=\left\{1;2;3;6\right\}\)

Ta có bảng :

x - 112
x + 363
x23
x30
1 tháng 4 2018

2)

đặt a= 1+2-3-4+5+6-........+2002-2003-2004+2005+2006

Biểu thức a có (2006-1)/1+1=2006(số hạng)

Nhóm 4 số hạng vào một nhóm ta có 2006 / 4= 501 dư 2 số hạng để ra một số đầu và một số cuối

a= 1+(2-3-4+5)+(6-7-8+9)-.........+(2002-2003-2004+2005) + 2006

a=1+0+0+......+0+2006

a=1+2006

a=2007 

vậy a = 2007

13 tháng 8 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)(nhân mỗi vế với 1/2)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)

\(\Rightarrow x+1=2011\Rightarrow x=2010\)

13 tháng 8 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)

\(\Rightarrow x+1=2011\)

\(\Rightarrow x=2010\)