Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
\(x-2\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy x=0 hoặc x=4 là giá trị cần tìm
a) \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\) vậy \(x=1\)
b) \(\left(x-2\right)^2-1=0\Leftrightarrow\left(x-2\right)^2=1\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) vậy \(x=3;x=1\)
c) \(\left(2x-1\right)^3=-8\Leftrightarrow2x-1=\sqrt[3]{-8}\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
d) \(\left(x+2\right)^2+1=0\Leftrightarrow\left(x+2\right)^2=-1\) (vô lí)
vậy phương trình vô nghiệm
a) (x-1)2 = 0
<=> x-1 = 0
<=> x = 1
b) (x-2)2 - 1 = 0
<=> (x-2)2 = 1
<=> \(\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c) (2x-1)3 = -8
<=> (2x-1)3 = -23
<=> 2x - 1 = -2
<=> 2x = -1
<=> x = \(-\dfrac{1}{2}\)
d) (x+2)2 + 1 = 0
<=> (x+2)2 = -1
<=> x+2 = -1
<=> x = -3
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Rightarrow x=y=\frac{1}{2}\)
Vì GTTĐ luôn lớn hơn hoặc bằng 0, mà theo đề bài
=> 6 - 2x = 0 và x - 13 = 0
2x = 6 x = 13
x = 3
Vậy,................
\(\left|x-2.1\right|-0.9=0\)
\(\left|x-2.1\right|=0.9\)
TH1 : \(x-2.1=0.9\)
\(x=3\)
Th2 : \(x-2.1=-0.9\)
\(x=1.2\)
\(\left|x-2,1\right|-0,9=0\)
\(\Leftrightarrow\left|x-2,1\right|=0,9\)
\(\Rightarrow x-2,1=\orbr{\begin{cases}0,9\\-0,9\end{cases}}\)
\(\Rightarrow x=\orbr{\begin{cases}3\\1,2\end{cases}}\)