Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1.3+1/1.3 . 2.4+1/2.4 . ....... . 2016.2018+1/2016.2018
= 2^2/1.3 . 3^2/2.4 . ....... . 2017^2/2016.2018
= 2.3. ...... . 2017/1.2. ..... . 2016 . 2.3. ..... . 2017/3.4. ...... . 2018
= 2017 . 2/2018
= 2017/1009
Tk mk nha
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{x\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}\)
\(=\frac{x+1-1}{x+1}=\frac{x}{x+1}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x.\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}\)
\(=\frac{x+1}{x+1}-\frac{1}{x+1}\)
\(=\frac{x}{x+1}\)
1-1/x+1=2015/2016
=>1/x+1=1-2015/2016=1/2016
=>x+1=2016=>x=2015
mình không ghi lại đề nha:
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(\frac{x}{x+1}=\frac{2015}{2016}\)
=>x=
Đến đó bạn tự giải tiếp ha
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)
= 1/2 .( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + .......+ 1/2014.2015 - 1/2015.2016)
= 1/2 ( 1/2 - 1/2015.2016)
Tính tiếp p nhé.
= 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/x - 1/x + 1
= 1/2 - 1 /x + 1 =199/200
=1/x+1 = 1/2 - 199/200
1/ x + 1 = ....
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x.\left(x+1\right)}=\frac{199}{200}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{199}{200}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{199}{200}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{199}{200}\)
\(\Rightarrow\frac{1}{x+1}=-\frac{99}{200}\)
\(\Rightarrow\frac{-99}{-\left(x+1\right).99}=\frac{-99}{200}\)
\(\Rightarrow-99x+-99=200\)