K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:
\(\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3(\sqrt{x}-3)+9}{\sqrt{x}-3}=3+\frac{9}{\sqrt{x}-3}\)

Để biểu thức đã cho nguyên thì $\frac{9}{\sqrt{x}-3}$ nguyên. Đặt $\frac{9}{\sqrt{x}-3}=t$ với $t$ nguyên.

$\sqrt{x}=\frac{9}{t}+3$

Do $\sqrt{x}\geq 0$ nên $\frac{9}{t}+3\geq 0\Leftrightarrow \frac{3(3+t)}{t}\geq 0$

$\Leftrightarrow t>0$ hoặc $t\leq -3$

$x=(\frac{9}{t}+3)^2$ với $t$ là số nguyên thỏa mãn $t>0$ hoặc $t\leq -3$

26 tháng 5 2022

A =\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

A = \(\dfrac{3\sqrt{x}-3+3}{\sqrt{x}-3}\)= 3 -\(\dfrac{3}{\sqrt{x}-3}\)

Để A nguyên thì : 3 \(⋮\)\(\sqrt{x}\) - 3

\(\sqrt{x}\) - 3 \(\in\) \(\left\{-3;-1;1;3\right\}\)

\(\sqrt{x}\) - 3 = -3 \(\Rightarrow\) \(x\) = 0

\(\sqrt{x}\) - 3 = -1 \(\Rightarrow\) \(x\) = 4

\(\sqrt{x}\) - 3 = 1 \(\Rightarrow\) \(x\) = 16

\(\sqrt{x}\) - 3 = 3 \(\Rightarrow\) \(x\)= 36

kết luận \(x\)\(\in\) \(\left\{0;4;16;36\right\}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

 

 

17 tháng 12 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

b: Để A>2 thì A-2>0

=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)

TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)

=>\(2< \sqrt{x}< \dfrac{5}{2}\)

=>4<x<25/4

c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{1;9\right\}\)

kết hợp ĐKXĐ, ta được: x=9

24 tháng 8 2016

P = AB = \(\frac{3\sqrt{x}}{\sqrt{x}+1}\)= 3 - \(\frac{3}{\sqrt{x}+1}\)

Để P nguyên thì \(1+\sqrt{x}\)phải là ước của 3 hay \(1+\sqrt{x}\)= (1;3)

Thế vào giải ra

25 tháng 6 2023

loading...  

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

7 tháng 9 2020

a,  \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)

để P > -2 

\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra

c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\)  \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)

=> -căn x + 5 - 7 ⋮ căn x - 5

=> -(căn x - 5) - 7 ⋮ căn x - 5 

=> 7 ⋮ x - 5 đoạn này dễ

8 tháng 9 2020

a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\)  đoạn này đúng rồi 

\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)

\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)

Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)

Làm luôn cho đầy đủ =)

5 tháng 3 2022

em tham khảo

undefined