Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)
\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)
\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)
Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)
Phương trình trở thành:
\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)
\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)
Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(
b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)
Pt trở thành:
\(a+10\left(\frac{a^2-5}{4}\right)=13\)
\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)
\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)
c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)
\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)
Đặt \(x\sqrt{2x^2+4}=a\) ta được:
\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)
Đệ biết là có người làm câu c,d nên xin xí câu e :3
ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)
\(\Rightarrow x=3\left(tm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)
\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)
\(\Leftrightarrow x^3-18x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)
8.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)
\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)
\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)
\(\Leftrightarrow x=6\)
6.
ĐKXD: ...
\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)
\(\Leftrightarrow x=3\)
7.
\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)
\(\Rightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)
\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)
Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)
PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)
Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)
giai tiep
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)
Viết đề mà ko ai đọc được vậy :v
a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)
\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)
\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy...
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)
<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)
Xét \(\sqrt{x^2+1}+3-x=0\)
<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))
Xét \(\sqrt{x^2+1}+3-x\ne0\)
pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)
<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)
<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)
pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)
<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))
=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)
<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)
<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))
=>(2) vô nghiệm
Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)
P/s: Hơi dài :)
Từ đề bài ta dễ dàng có được \(4x-1>0\Leftrightarrow x>\frac{1}{4}\)
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
\(\Leftrightarrow\left(4x-1\right)\left(\sqrt{x^2+1}-1\right)=2x^2+2x+1-4x+1\)
\(\Leftrightarrow2x^2-2x-\left(4x-1\right)\cdot\frac{x^2}{\sqrt{x^2+1}+1}=0\)
\(\Leftrightarrow x\left[2x-2-\frac{x\left(4x-1\right)}{\sqrt{x^2+1}+1}\right]=0\)
\(\Leftrightarrow x\left[\frac{\left(2x-2\right)\left(\sqrt{x^2+1}+1\right)-x\left(4x-1\right)}{\sqrt{x^2+1}+1}\right]=0\)
Dễ thấy phương trình sau vô nghiệm nên x=0
phương trình này có nghiệm bằng 4/3 . Mong bạn làm giúp mình vs . Đừng nhân vào ra bậc 4 nhá