\(\sqrt{3-2x}\)   b. ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)

25 tháng 5 2021

b) ĐKXĐ: \(-1\le x\le3\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).

d) ĐKXĐ: \(x< \dfrac{3}{5}\).

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

25 tháng 7 2017

a) Để A có nghĩa \(\Leftrightarrow4x^2-1\ge0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\)

Vậy A có nghĩa khi \(x\ge\dfrac{1}{2}\) hoặc \(x\le-\dfrac{1}{2}\)

b) Ta có 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 > 0 với mọi x.

Vậy B có nghĩa với mọi x

c) Để C có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow0< x< 2\)

Vậy C có nghĩa khi 0 < x < 2

d) Để D có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{3}{x}>0\\-3x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}>0\\-3x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không có giá trị nào của x thỏa mãn điều kiện này.

Vậy không có giá trị của x để D có nghĩa

11 tháng 8 2017

a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)

b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)

d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)

a: ĐKXD: 3x-1>=0

hay x>=1/3

b: ĐKXĐ: x2-2>=0

hay \(\left[{}\begin{matrix}x>=\sqrt{2}\\x< =-\sqrt{2}\end{matrix}\right.\)

d: ĐKXĐ: 2x-15>0

hay x>15/2

e: ĐKXĐ: (x-1)(x-3)>=0

=>x>=3 hoặc x<=1

17 tháng 8 2018

mn ơi giúp mình với ạ

cảm ơn mỏi người ạ =))

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Bài 1:

Để căn thức có nghĩa thì:

a)

\(-5x-10\geq 0\Leftrightarrow 5x+10\leq 0\Leftrightarrow x\leq -2\)

b)

\(x^2-3x+2\geq 0\Leftrightarrow (x-1)(x-2)\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-2\geq 0\\ x-1\leq 0; x-2\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 2\\ x\leq 1\end{matrix}\right.\)

c) \(\frac{x+3}{5-x}\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x+3\geq 0; 5-x>0\\ x+3\leq 0; 5-x< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3\leq x< 5\\ -3\geq x>5 (\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow -3\leq x< 5\)

d) \(-x^2+4x-4\geq 0\)

\(\Leftrightarrow -(x^2-4x+4)\geq 0\Leftrightarrow -(x-2)^2\geq 0\)

\((x-2)^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x=2\)

17 tháng 6 2018

a) Để : \(\sqrt{3x-2}\) xác định thì :

3x - 2 ≥ 0 ⇔ x ≥ \(\dfrac{2}{3}\)

KL...........

b) Để : \(\sqrt{4-2x}\) xác định thì :

4 - 2x ≥ 0 ⇔ x ≤ 2

KL.......

c) Để : \(\sqrt{-4x}\) xác định thì :

-4x ≥ 0 ⇔ x ≤ 0

KL.......

d) Để : \(\sqrt{x^2-2x+1}\) xác định thì :

x2 - 2x + 1 ≥ 0 ⇔ ( x - 1)2 ≥ 0 ( luôn đúng ∀x)

KL.........

Còn lại tương tự bạn nhé.

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Căn bậc hai. Căn bậc ba

2 tháng 6 2017

ta có x=1 , thế vào f(x)

2 tháng 6 2017

x=1/2

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9