Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì
\(x^2-8x-9\ge0\)
\(\Leftrightarrow x^2+x-9x-9\ge0\)
\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)
\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)
\(Để\sqrt{4-9x^2}\text{có nghĩa}\)
\(\Rightarrow4-9x^2\ge0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)
\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)
Để căn thức \(\sqrt{\dfrac{2x+1}{x^2+1}}\) có nghĩa thì:
\(\left\{{}\begin{matrix}\dfrac{2x+1}{x^2+1}\ge0\\x^2+1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+1\ge0\left(vì.x^2+1>0\forall x\right)\\x^2+1\ne0\forall x\end{matrix}\right.\)
\(\Rightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)
#\(Toru\)
\(\sqrt{\dfrac{2x+1}{x^2+1}}\)
Có nghĩa khi:
\(\dfrac{2x+1}{x^2+1}\ge0\)
\(\Leftrightarrow2x+1\ge0\)
\(\Leftrightarrow2x\ge-1\)
\(\Leftrightarrow x\ge-\dfrac{1}{2}\)
Vậy: ...
a: ĐKXĐ: x-2>=0 và 6-2x>=0
=>2<=x<=3
b: DKXĐ: x+2>=0
=>x>=-2
Để \(\sqrt{\frac{-3}{-2x+15}}\) có nghĩa thì \(\frac{-3}{-2x+15}>0\)
\(\Rightarrow-2x+15>0\)
\(\Rightarrow-2x>-15\)
\(\Rightarrow x>\frac{15}{2}\)
Vậy \(x>\frac{15}{2}\) thì \(\sqrt{\frac{-3}{-2x+15}}\) có nghĩa
\(\sqrt{\frac{-3}{-2x+15}}\)
Để căn thức trên có nghĩa thì: \(\frac{-3}{-2x+15}>0\Leftrightarrow-2x+15< 0\Leftrightarrow x>\frac{15}{2}\)