Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Để đa thức có nghiệm
\(\Leftrightarrow x^2-64=0\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm8\)
Vậy ...
d) Để đa thức có nghiệm
\(\Leftrightarrow x^2-81=0\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow x=\pm9\)
Vậy ...
h) Để đa thức có nghiệm
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow\left(x-6\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy ...
Các câu còn lại làm tương tự.
a, x\(^2\) - 64 = 0
\(\Rightarrow\) x\(^2\) = 0 + 64
= 64
= 8\(^2\)
\(\Rightarrow\) x = 8
Vậy nghiệm của \(x^2-64\) là 8
d, \(x^2-81\) = 0
\(\Rightarrow\) x\(^2\) = 81
= 9\(^2\)
\(\Rightarrow\) x = 9
vậy nghiệm của \(x^2-81\) là 9
a.
| x | = 5,6
=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)
Vậy \(x\in\left\{-5,6;5,6\right\}\)
b, \(\left|x-3,5\right|=5\)
=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)
Vậy \(x\in\left\{-1,5;8,5\right\}\)
c,\(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=> \(\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{4};\dfrac{5}{4}\right\}\)
d,\(\left|4x\right|-\left(\left|-13,5\right|\right)=\left|\dfrac{1}{4}\right|\)
=> \(\left|4x\right|-13,5=\dfrac{1}{4}\)
=> \(\left|4x\right|=13,75\)
=>\(\left[{}\begin{matrix}4x=13,75\\4x=-13,75\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3,4375\\x=-3,4375\end{matrix}\right.\)
Vậy \(x\in\left\{-3,4375;3,4375\right\}\)
e, ( x - 1 ) 3 = 27
=> x - 1 = 3
=> x = 4
Vậy x = 4
f, ( 2x - 3)2 = 36
=> \(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=4,5\\x=-1,5\end{matrix}\right.\)
Vậy x\(\in\left\{-1,5;4,5\right\}\)
g, \(5^{x+2}=625\)
=> \(5^{x+2}=5^4\)
=> x + 2 = 4
=> x = 2
Vậy x = 2
h, ( 2x - 1)3 = -8
=> 2x - 1 = -2
=> x = \(\dfrac{-1}{2}\)
Vậy x = \(\dfrac{-1}{2}\)
i, \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=> \(\dfrac{1.2.3.4.5...30.31}{4.6.8.10.12...62.64}=2^x\)
=>\(\dfrac{1.2.3.4.5...30.31}{\left(2.3.4.5...30.31.32\right)\left(2.2.2.2...2.2_{ }\right)}=2^x\)(có 31 số 2)
=> \(\dfrac{1}{32.2^{31}}=2^x\)
=> \(\dfrac{1}{2^{36}}=2^x\)
=> x = -36
Vậy x = -36
a) \(\left(2x+3\right)^2=\frac{9}{144}\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+3=\frac{1}{4}\\2x+3=\frac{-1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{-11}{4}\\2x=\frac{-13}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-11}{8}\\x=\frac{-13}{8}\end{cases}}}\)
Vậy ...
b) Ta có: \(\left(3x-1\right)^3=\frac{-8}{27}=\left(\frac{-2}{3}\right)^3\)
\(\Leftrightarrow3x-1=\frac{-2}{3}\Leftrightarrow3x=\frac{1}{3}\Leftrightarrow x=\frac{1}{9}\)
Vậy ....
c) \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25\Leftrightarrow x=\left\{5;-5\right\}\)
Vậy ...
d) \(\frac{x^7}{81}=27\Leftrightarrow x^7=27.81=2187\)
Mà 37 = 2187 => x7 = 37 => x = 3
Vậy ....
e) \(\frac{x^8}{9}=729\Leftrightarrow x^8=729.9=6561\)
Mà 38 = (-3)8 = 6561
=> x8 = 38 = (-3)8
=> x = {-3;3}
Vậy ...
Bài 2
\(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)
\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)