Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{x+1}{3}=\frac{-1}{y-2}\)\(\Rightarrow\)\(\left(x+1\right)\left(y-2\right)=\left(-1\right).3\)
\(\left(x+1\right)\left(y-2\right)=-3\)
TRƯỜNG HỢP 1 :
\(\hept{\begin{cases}x+1=1\\y-2=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
TRƯỜNG HỢP 2 :
\(\hept{\begin{cases}x+1=-1\\y-2=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TRƯỜNG HỢP 3 :
\(\hept{\begin{cases}x+1=3\\y-2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
TRƯỜNG HỢP 4 :
\(\hept{\begin{cases}x+1=-3\\y-2=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}}\)
Vậy ...
Ta có\(-\frac{2}{3}\) \(X\) (\(X\) \(-\frac{1}{4}\) ) = \(\frac{1}{3}\)\(X\) (\(2X-1\) )
\(\Rightarrow\) \(\frac{-2}{3}\) \(X^2\)\(+\) \(\frac{1}{6}\) \(X\) = \(\frac{2}{3}\) \(X^2\) \(-\) \(\frac{1}{3}\) \(X\)
\(\Rightarrow\) \(\frac{-2}{3}\) \(X\) \(+\) \(\frac{1}{6}\) = \(\frac{2}{3}\) \(X\) \(-\) \(\frac{1}{3}\)
\(\Rightarrow\) \(\frac{-2}{3}\) \(X\) \(+\) \(\frac{1}{6}\) \(+\) \(\frac{1}{3}\) = \(\frac{2}{3}\) \(X\)
\(\Rightarrow\) \(\frac{-2}{3}\) \(X\) \(+\) \(\frac{1}{2}\) = \(\frac{2}{3}\) \(X\)
\(\Rightarrow\) \(\frac{1}{2}\) = \(\frac{2}{3}\) \(X\) \(+\) \(\frac{2}{3}\) \(X\)
\(\Rightarrow\) \(\frac{1}{2}\) = \(X\) (\(\frac{2}{3}\) \(+\) \(\frac{2}{3}\) )
\(\Rightarrow\) \(\frac{1}{2}\) = \(\frac{4}{3}\) \(X\)
\(\Rightarrow\) \(X\) = \(\frac{1}{2}\) \(\div\) \(\frac{4}{3}\)
\(\Rightarrow\) \(X\) = \(\frac{3}{8}\)
Có gì không hiểu cứ hỏi tớ nhá !
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1}{20}\)
a) \(\frac{x-1}{6}=\frac{2x+3}{7}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(2x+3\right)\)
\(\Leftrightarrow7x-7=12x+18\)
\(\Leftrightarrow5x+18=-7\)
\(\Leftrightarrow5x=-25\)
\(\Leftrightarrow x=-5\)
b) \(\left(2x^2-\frac{1}{2}x\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{2}\right)\left(x^2+1\right)=0\)
Vì \(x^2+1>0\)nên \(\orbr{\begin{cases}x=0\\2x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
Bài 1 :
Ta có :
\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)
Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)
Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)
Vậy \(A>B\)
Bài 2 :
Ta có :
\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)
\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
Nên : \(M>4\)
Vậy \(M>4\)
Bài 3 :
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)
Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)
\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)
\(\Rightarrow A< \frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Bài 4 :
\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow A=\frac{1008}{2017}\)
Vậy \(A=\frac{1008}{2017}\)
\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)
\(1-\frac{1}{x+2}=\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)
\(\Rightarrow x+2=2017\)
\(\Rightarrow x=2017-2=2015\)
Vậy \(x=2015\)
Bài 2 :x+1/3=x-3/4 <=>4.(x+1)=3.(x-3) 4x+4=3x-9 4x-3x=-9-4 x=-13
Bài 1:
ta có: \(\frac{17}{x+1}.\frac{x}{6}=\frac{17x}{6x+6}\)
Để 17x/6x+6 thuộc Z
=> 17x chia hết cho 6x + 6
=> 102x chia hết cho 6x + 6
102x + 102 - 102 chia hết cho 6x + 6
17.(6x+6) - 102 chia hết cho 6x+6
mà 17.(6x+6) chia hết cho 6x + 6
=> 102 chia hết cho 6x + 6
=> ...
bn tự lm típ nha!
Bài 2:
ta có: \(\frac{x+1}{3}=\frac{x-3}{4}\)
\(\Rightarrow4x+4=3x-9\)
\(\Rightarrow4x-3x=-9-4\)
\(x=-13\)
Ta có:
\(-\frac{3}{7}+x=\frac{1}{3}\)
=>\(x-\frac{3}{7}=\frac{1}{3}\)
=>\(x=\frac{1}{3}+\frac{3}{7}=\frac{16}{21}\)
Vậy......
\(\frac{-6}{3}\left[x-\frac{1}{4}\right]=2x-1\)
\(-2x-\left[\frac{1}{4}.-2\right]=2x-1\)\
\(-2x-\frac{-1}{2}=2x-1\)
\(2x--2x=1-\frac{-1}{2}\)
\(\)\(4x=\frac{3}{2}\)
\(x=\frac{3}{2}:4\)
\(x=\frac{3}{8}\)