Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn giúp mình được câu nào thì mình cảm ơn nhé ... không cần giải hết đâu
Bài 1.
a) x2 +10x =24
<=>x2 + 10x -24=0
<=>x2 -2x + 12x - 24= 0
<=>x(x-2) +12(x-2)=0
<=>(x+12)(x-2)=0
<=> \(\left[\begin{array}{nghiempt}x-2=0\\x+12=0\end{array}\right.\)
⇔ \(\left[\begin{array}{nghiempt}x=2\\x=-12\end{array}\right.\)
b)4x2 + 4x = 24
⇔ 4x2 + 4x − 24 = 0
⇔ 4 (x2 + x − 6) = 0
⇔ x2 + x − 6 = 0
⇔ x2 + 3x − 2x − 6 = 0
⇔ x (x + 3) − 2 (x + 3) = 0
⇔ (x − 2)(x + 3) = 0
⇔ \(\left[\begin{array}{nghiempt}x-2=0\\x+3=0\end{array}\right.\) ⇔ \(\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
c)4x2 − 4x = 48
⇔ 4x2 − 4x − 48 = 0
⇔ 4 (x2 − x − 12) = 0
⇔ x2 − x − 12 = 0
⇔ x2 + 3x − 4x − 12 = 0
⇔ x (x + 3) − 4 (x + 3) = 0
⇔ (x + 3)(x − 4) = 0
⇔ \(\left[\begin{array}{nghiempt}x+3=0\\x-4=0\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
- \(\Leftrightarrow\left(a^2+4\right)x=3a^2-48\Leftrightarrow x=\frac{3a^2-48}{a^2+4}\)
- \(\Leftrightarrow\left(a^2+5\right)x=a^2\Leftrightarrow x=\frac{a^2}{a^2+5}\)
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54
26x +28 = 54
26x = 54-28 = 26
x = 1
b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33
39x +6 = -33
39x = -33-6 = -39
x = -1
\(A=x^2+9x+25\)
\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)
\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)
Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)
b,\(B=4x^2-8x+\frac{21}{2}\)
\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)
\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)
c,\(C=-x^2+2x+\frac{5}{2}\)
\(=-\left(x^2-2x-\frac{5}{2}\right)\)
\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)
\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)
Bài 1.
A = x2 + 9x + 25
= ( x2 + 9x + 81/4 ) + 19/4
= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 19/4 <=> x = -9/2
B = 4x2 - 8x + 21/2
= 4( x2 - 2x + 1 ) + 13/2
= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 13/2 <=> x = 1
C = -x2 + 2x + 5/2
= -( x2 - 2x + 1 ) + 7/2
= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxC = 7/2 <=> x = 1
D = -9x2 - 12x + 27/2
= -9( x2 + 4/3x + 4/9 ) + 35/2
= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x
Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3
=> MaxD = 35/2 <=> x = -2/3
Bài 2.
a) 4x2 + 9y2 + 12x + 12y + 13 = 0
<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0
<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)
=> x = -3/2 ; y = -2/3
b) 16x2 + 4y2 - 8x + 12y + 10 = 0
<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0
<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)
=> x = 1/4 ; y = -3/2
a)\(x^2+10x=24\)
\(\Leftrightarrow x^2+10x-24=0\)
\(\Leftrightarrow x^2-2x+12x-24=0\)
\(\Leftrightarrow x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+12=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-12\end{array}\right.\)
b)\(4x^2+4x=24\)
\(\Leftrightarrow4x^2+4x-24=0\)
\(\Leftrightarrow4\left(x^2+x-6\right)=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
c)\(4x^2-4x=48\)
\(\Leftrightarrow4x^2-4x-48=0\)
\(\Leftrightarrow4\left(x^2-x-12\right)=0\)
\(\Leftrightarrow x^2-x-12=0\)
\(\Leftrightarrow x^2+3x-4x-12=0\)
\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
\(a,x^2+10x=24\)
\(\Leftrightarrow x^2+10x-24=0\)
\(\Leftrightarrow x^2-2x+12x-24=0\)
\(\Leftrightarrow x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+12=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-12\end{array}\right.\)
\(\text{Vậy x=2 hoặc x=-12 }\)
\(b,4x^2+4x=24\)
\(\Leftrightarrow4x^2+4x-24=0\)
\(\Leftrightarrow4x^2-8x+12x-24=0\)
\(=4x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\4x+12=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
Vậy hoặc \(\text{Vậy x=2 hoặc x=-3 }\)
\(c,4x^2-4x=48\)
\(\Leftrightarrow4x^2-4x-48=0\)
\(\Leftrightarrow\left[\left(2x\right)^2-2.2x+1^2\right]-1^2-48=0\)
\(\Leftrightarrow\left(2x-1\right)^2-49=0\)
\(\Leftrightarrow\left(2x-1\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-1-7\right)\left(2x-1+7\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-8=0\\2x+6=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-3\end{array}\right.\)
\(\text{Vậy x=4 hoặc x=-3 }\)