Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x - 7)2007 = (3x - 7)2005
=> (3x - 7)2007 - (3x - 7)2005 = 0
=> (3x - 7)2005 [(3x - 7)2 - 1] = 0
=> (3x - 7)2005 = 0 hoặc (3x - 7)2 - 1 = 0
+) (3x - 7)2005 = 0
=> 3x - 7 = 0
=> 3x = 7
=> x = 7/3
+) (3x - 7)2 - 1 = 0
=> (3x - 7)2 = 1
=> 3x - 7 = 1 => 3x = 8 => x = 8/3
3x - 7 = -1 => 3x = 6 => x = 2
Vậy: x \(\in\){-7/3;8/3;2
\(\left(3x-7\right)^{2015}=\left(3x-7\right)^{2017}\Rightarrow\left(3x-7\right)^{2017}-\left(3x-7\right)^{2015}=0\Leftrightarrow\left(3x-7\right)^{2015}\left[\left(3x-7\right)^2-1\right]=0\Leftrightarrow\orbr{\begin{cases}3x-7=0\\\left(3x-7\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}3x=7\\3x-7=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{1+7}{3}=\frac{8}{3}\end{cases}}\)
Vậy phương trình có hai nghiệm là \(x=\frac{7}{3}\)và \(x=\frac{8}{3}\)
Vì \(\left(3x-7\right)^{2015}=\left(3x-7\right)^{2017}\) =>3x-7=0 hoặc 3x-7=1
- Nếu 3x-7=0=>x=\(\frac{7}{3}\)
- Nếu 3x-7=1=>x=\(\frac{8}{3}\)
Vậy \(x=\orbr{\begin{cases}\frac{7}{3}\\\frac{8}{3}\end{cases}}\)
(3x-7)2007 = (3x-7)2005
=> (3x-7)2007 - (3x-7)2005 = 0
=> (3x-7)2005[(3x-7)2-1] = 0
\(\Rightarrow\left[{}\begin{matrix}\left(3x-7\right)^{2005}=0\\\left(3x-7\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=7\\3x-7=\pm1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\\dfrac{6}{3}\end{matrix}\right.\)Vậy:..........
\(\left(3x-7\right)^{2007}=\left(3x-7\right)^{2005}\)
Để \(\left(3x-7\right)^{2007}=\left(3x-7\right)^{2005}\)
thì 3x- 7= 1 hoặc 3x-7= 0
\(\left\{{}\begin{matrix}\left(3x-7\right)^{2007}=1\\\left(3x-7\right)^{2007}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-7=1\\3x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=8\\3x=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{7}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(3x-7\right)^{2005}=1\\\left(3x-7\right)^{2005}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-7=1\\3x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=8\\3x=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{8}{3}\\x=\dfrac{7}{3}\end{matrix}\right.\)
A(x) = 7 - 3x + x2 + 4x - 1 - 3x2
= ( 7 - 1 ) + ( 4 - 3 )x + ( 1 - 3 )x2
= 6 + x - 2x2
B(x) = 2x - 4 - 2x2 - x + 5 - 3x
= ( -4 + 5 ) + ( 2 - 3 - 1)x - 2x2
= 1 - 2x - 2x2
Để A(x) = B(x)
=> 6 + x - 2x2 = 1 - 2x - 2x2
=> 6 - 1 = -x - 2x - 2x2 + 2x2
=> 5 = -3x
=> x = -5/3
Vậy x = -5/3
Vào toán lp 7 :> I thick mấy bài đa thức ... chơi luôn cho máu !
\(A\left(x\right)=7-3x+x^2+4x-1-3x^2=6+x-2x^2\)
\(B\left(x\right)=2x-4-2x^2-x+5-3x=-2x+1-2x^2\)
Ta có : \(A\left(x\right)=B\left(x\right)\)
\(\Leftrightarrow6+x-2x^2=-2x+1-2x^2\)
\(\Leftrightarrow6+x-2x^2+2x-1+2x^2=0\)
\(\Leftrightarrow5+3x=0\Leftrightarrow3x=-5\Leftrightarrow x=-\frac{5}{3}\)
\(8.2^{3x}.7^y=56^{2x}.5^{x-1}\)
\(2^3.2^{3x}.7^y=7^{2x}.8^{2x}.5^{x-1}\)
\(2^{3+3x}.7^y=7^{2x}.2^{6x}.5^{x-1}\)
\(7^{2x}:7^y=2^{6x}:2^{3+3x}.5^{x-1}\)
\(7^{2x-y}=2^{6x-3-3x}.5^{x-1}\)
\(7^{2x-y}=2^{3x-3}.5^{x-1}\)
\(7^{2x-y}=2^{3x}:8.5^x:5\)
\(7^{2x-y}=8^x.5^x:40\)
\(7^{2x-y}=40^x:40\)
\(7^{2x-y}=40^{x-1}\)
\(\Rightarrow x=y=1\)
Định mệnh đùa à
thằng lớp 1 nhìn còn biết (3x-7)2005 ko bao h bằng (3x-7)2003 vậy mà thằng ad cx đăng
\(\left(3x-7\right)^{2005}=\left(3x-7\right)^{2003}\)
\(\Rightarrow3x-7\in\left\{1;0;-1\right\}\)
\(\Rightarrow3x\in\left\{8;7;6\right\}\Rightarrow x\in\left\{\frac{8}{3};\frac{7}{3};2\right\}\)