K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

a) x3 - 9x2 + 27x - 27 = -8

<=> x3 - 3x2.3 + 3x.32 - 33 = -8

<=> (x - 3)3 = -23

<=> x - 3 = -2

<=> x = 1 (T/m)

Vậy x = 1.

28 tháng 7 2019

b) 64x3 + 48x2 + 12x + 1 = 27

<=> (4x)3 + 3.(4x)2.1 + 3.4x.12 + 13 = 27

<=> (4x + 1)3 = 33

<=> 4x + 1 = 3

<=> 4x = 2

<=> x = \(\frac{1}{2}\)(T/m)

Vậy x = \(\frac{1}{2}\).

28 tháng 7 2019

\(x^3-9x^2+27x-27=-8\Leftrightarrow\left(x^3-27\right)-\left(9x^2-27x\right)=\left(x-3\right)\left(x^2+3x+9\right)-9x\left(x-3\right)=\left(x-3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3=-8=\left(-2\right)^3\Rightarrow x=\left(-2\right)+3=1\)

\(64x^3+48x^2+12x+1=\left(64x^3+1\right)+\left(48x^2+12x\right)=\left(4x+1\right)\left(16x^2-4x+1\right)+12x\left(4x+1\right)=\left(4x+1\right)\left(16x^2+8x+1\right)=\left(4x+1\right)^3=27\Rightarrow4x=2\Leftrightarrow x=\frac{1}{2}\)

29 tháng 7 2019

c) \(\left(2x-1\right)^3-4x^2.\left(2x-3\right)=5\)

\(\Leftrightarrow\left(8x^3-12x^2+6x-1\right)-\left(8x^3-12x^2\right)=5\)

\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3+12x^2=5\)

\(\Leftrightarrow6x-1=5\)

\(\Leftrightarrow6x=6\)

\(\Leftrightarrow x=1\)

d) \(\left(x+4\right)^3-x^2.\left(x+12\right)=16\)

\(\Leftrightarrow\left(x^3+12x^2+48x+64\right)-\left(x^3+12x^2\right)=16\)

\(\Leftrightarrow x^3+12x^2+48x+64-x^3-12x^2=16\)

\(\Leftrightarrow48x+64=16\)

\(\Leftrightarrow48x=-48\)

\(\Leftrightarrow x=-1\)

#vì câu a,b có người làm rồi nên mình chỉ làm c,d thôi nhé ! :)

Học Tốt !!

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

1.

$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$

2.

a)

$x^3-9x^2+27x-27=-8$

$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$

$\Leftrightarrow (x-3)^3=-8=(-2)^3$

$\Rightarrow x-3=-2$

$\Leftrightarrow x=1$

b)

$64x^3+48x^2+12x+1=27$

$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$

$\Leftrightarrow (4x+1)^3=3^3$

$\Rightarrow 4x+1=3$

$\Leftrightarrow x=\frac{1}{2}$

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

a) Ta có: \(x^2+2x+1\)

\(=x^2+2\cdot x\cdot1+1^2\)

\(=\left(x+1\right)^2\)

b) Ta có: \(1-2y+y^2\)

\(=y^2-2\cdot y\cdot1+1^2\)

\(=\left(y-1\right)^2\)

c) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

d) Ta có: \(27+27x+9x^2+x^3\)

\(=x^3+3x^2+6x^2+18x+9x+27\)

\(=x^2\left(x+3\right)+6x\left(x+3\right)+9\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+6x+9\right)\)

\(=\left(x+3\right)^3\)

e) Ta có: \(8-125x^3\)

\(=2^3-\left(5x\right)^3\)

\(=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) Ta có: \(64x^3+\frac{1}{8}\)

\(=\left(4x\right)^3+\left(\frac{1}{2}\right)^3\)

\(=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

g) Ta có: \(1-x^2y^4\)

\(=1^2-\left(xy^2\right)^2\)

\(=\left(1-xy^2\right)\left(1+xy^2\right)\)

16 tháng 8 2020

a) \(x^2+2x+1=x^2+2x.1+1^2=\left(x+1\right)^2\)

b) \(1-2y+y^2=1^2-2y.1+y^2=\left(1-y\right)^2\)

c) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

d) \(27+27x+9x^2+x^3=3^3+3.3^2x+3.3x^2+x^3=\left(3+x\right)^3\)

e) \(8-125x^3=2^3-\left(5x\right)^3=\left(2-5x\right)\left[2^2+2.5x+\left(5x\right)^2\right]=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) \(64x^3+\frac{1}{8}=\left(4x\right)^3+\left(\frac{1}{2}\right)^3=\left(4x+\frac{1}{2}\right)\left[\left(4x\right)^2-4x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

Ko chắc ạ!

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

29 tháng 10 2016

đăng ít 1 thôi

30 tháng 10 2016

1. 8 - 12x + 6x2 - x3

= 23 - 3.22.x + 3.x2.2 - x3

=(2-x)3

2. 125x3 - 75x2 +15x - 1

=(5x)3 - 3.(5x)2.1 + 3.5x.12 - 13

=(5x - 1)3

3, 4 (sai đề)

5. x3 + 2x2 - 6x - 27

=(x3 - 27) + (2x2 - 6x)

=(x3 - 33) + (2x2 - 6x)

=(x -3)(x2 + 3x + 9) + 2x(x-3)

=(x-3)(x2 + 3x +9 +2x)

=(x-3)(x2 + 5x +9)

6. 12x3 + 4x2- 27x -9

=(12x3 + 4x2) - (27x + 9)

=4x2(3x + 1) - 9(3x +1)

=(3x -1)(4x2 -9)

=(3x-1)(2x-3)(2x+3)

 

Bài 1:

\(B=\dfrac{1}{9}x^2-2x+9\)

\(=\left(\dfrac{1}{3}x\right)^2-2\cdot\dfrac{1}{3}x\cdot3+3^2=\left(\dfrac{1}{2}x-3\right)^2\)

\(C=x^3-9x^2+27x-27=\left(x-3\right)^3\)

\(D=27x^3+27x^2+9x+1=\left(3x+1\right)^3\)

\(E=\left(x-2y\right)^3\)