Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right)x=\frac{16}{5}\)
\(\Rightarrow\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}.x=\frac{16}{5}-\frac{8}{5}\)
\(\Rightarrow\frac{2}{5}.x=\frac{8}{5}\)
\(\Rightarrow x=\frac{8}{5}:\frac{2}{5}=4\)
vậy x=4
=.8/5+((2*17*37+2*7*37+2*7*17)/(7*17*37))/((5*17*37+5*7*37+5*7*17)/(7*17*37))*x=16/5
=>8/5+((2*17*37+2*7*37+2*7*17)/(7*17*37))*((7*17*37)/(5*17*37+5*7*37+5*7*17))*x=16/5
=>8/5+(2(17*37+7*37+7*17))/(5(17*37+7*37+7*17))*x=16/5
=>8/5+(2/5)*x=16/5
=>(2/5)*x=16/5-8/5
=>(2/5)*x=8/5
=>x=(8/5)/(2/5)
=>x=4
Vậy x=4
a)\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(\Rightarrow1+x:\frac{1}{3}=-4\)
\(\Rightarrow x:\frac{1}{3}=-4-1=-5\)
\(\Rightarrow x=-5.\frac{1}{3}=\frac{-5}{3}\)
b)\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\left[\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right].x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\frac{2}{5}.x=\frac{16}{5}\)
\(\Rightarrow\frac{2}{5}.x=\frac{16}{5}-\frac{8}{5}=\frac{8}{5}\)
\(\Rightarrow x=\frac{8}{5}:\frac{2}{5}=\frac{8}{5}.\frac{5}{2}=\frac{8}{2}=4\)
\(\Rightarrow x=4\)
1.
A=\(\frac{-5x+-5y+-5z}{21}=\frac{-5\left(x+y+z\right)}{21}=\frac{-5}{21}.x+y+z\)
A= -z+z=0
<p style="padding: 10000000000000000px;" class="alert success"></p>
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{-1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}\)
\(=\frac{16}{35}\)
\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)
\(\frac{7}{5}+\left(\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right)\cdot x=\frac{16}{5}\)
\(\frac{2}{5}x=\frac{16}{5}-\frac{7}{5}\)
\(\frac{2}{5}x=\frac{9}{5}\)
x = \(\frac{9}{5}:\frac{2}{5}\)
x = 9/2
\(1\frac{2}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
\(\frac{7}{5}+\left[\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right].x=\frac{16}{5}\)
\(\frac{7}{5}+\frac{2}{5}.x=\frac{16}{5}\)
\(\frac{2}{5}.x=\frac{16}{5}-\frac{7}{5}\)
\(\frac{2}{5}.x=\frac{9}{5}\)
\(x=\frac{9}{5}:\frac{2}{5}\)
\(x=\frac{9}{5}.\frac{5}{2}\)
\(x=\frac{9}{2}\)