K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-1\right)^2-\left(2x\right)^2=0\)

\(\Rightarrow\left(x-1-2x\right)\left(x-1+2x\right)=0\)

\(\Rightarrow\left(-x-1\right)\left(3x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}-x-1=0\\3x-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-x=1\\3x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)

25 tháng 10 2021

\(a,x^2-5x\)

\(=x\left(x-5\right)\)

\(b,5x\left(x+5\right)+4x+20\)

\(=5x\left(x+5\right)+4\left(x+5\right)\)

\(=\left(5x+4\right)\left(x+5\right)\)

\(c,7x\left(2x-1\right)-4x+2\)

\(=7x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(7x-2\right)-\left(2x-1\right)\)

25 tháng 10 2021

\(d,x^2-16+2\left(x+4\right)\)

\(=x^2-16+2x+8\)

\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) ) 

\(e,x^2-10x+9\)

\(=x^2-x-9x+9\)

\(=x\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé ) 

\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)

\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)

\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)

Vậy ... 

a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)

\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)

=>-33x=34

hay x=-34/33

b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)

\(\Leftrightarrow2x^2=4\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: \(x^2-2\sqrt{3}x+3=0\)

\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)

hay \(x=\sqrt{3}\)

d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)

\(\Leftrightarrow x-\sqrt{2}=0\)

hay \(x=\sqrt{2}\)

23 tháng 7 2019

1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2

Do (x - 1)(2x + 1) \(⋮\)2x + 1 

=> 2 \(⋮\)2x + 1

=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}

+) 2x + 1 = 1 => 2x = 0 => x = 0

+) 2x + 1 = -1 => 2x = -2 => x = -1

b) 2x + y + 2xy - 3 = 0

=> 2x(1 + y) + (1 + y) = 4

=> (2x + 1)(1 + y) = 4

=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}

Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1} 

            => 1 + y \(\in\){4; -4}

Lập bảng : 

    2x + 1     1      -1
    1 + y    4     -4
      x   0     -1
      y   3    -5

Vậy ....

c) x2 + 2xy = 0

=> x(x + 2y) = 0

=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy x = y = 0

10 tháng 9 2018

a) \(x^2-2x=24\)

\(\Rightarrow x^2-2x-24=0\)

\(\Rightarrow x^2-6x+4x-24=0\)

\(\Rightarrow x\left(x-6\right)+4\left(x-6\right)=0\)

\(\Rightarrow\left(x-6\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) \(\left(5-2x\right)^2-16=0\)

\(\Rightarrow\left(5-2x\right)^2-4^2=0\)

\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)

\(\Rightarrow\left(1-2x\right)\left(9-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\9-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)

c)Sửa đề

\(x^2-4x+4-9x^2+6x-1=0\)

\(\Rightarrow\left(x^2-4x+4\right)-\left(9x^2-6x+1\right)=0\)

\(\Rightarrow\left(x-2\right)^2-\left(3x-1\right)^2=0\)

\(\Rightarrow\left(x-2-3x+1\right)\left(x-2+3x-1\right)=0\)

\(\Rightarrow\left(-2x-1\right)\left(4x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-2x-1=0\\4x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2x=1\\4x=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)

d) \(2x^2+y^2+2xy-4x+4=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2=0\)

\(\left(x+y\right)^2\ge0\) với mọi x và y

\(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2\ge0\) với mọi x và y

\(\left(x+y\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)

19 tháng 10 2020

a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)

\(\Leftrightarrow x=1\)

b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)

d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)

e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)

f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)

19 tháng 10 2020

a) x( x + 1 ) - x( x - 5 ) = 6

⇔ x2 + x - x2 + 5x = 6

⇔ 6x = 6

⇔ x = 1

b) 4x2 - 4x + 1 = 0

⇔ ( 2x - 1 )2 = 0

⇔ 2x - 1 = 0

⇔ x = 1/2

c) x2 - 1/4 = 0

⇔ ( x - 1/2 )( x + 1/2 ) = 0

⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)

d) 5x2 = 20x

⇔ 5x2 - 20x = 0

⇔ 5x( x - 4 ) = 0

⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

e) 4x2 - 9 - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 - x ) = 0

⇔ ( 2x - 3 )( x + 3 ) = 0

⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)

f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )

⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0

⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0

⇔ ( 2x - 5 )(-2) = 0

⇔ 2x - 5 = 0

⇔ x = 5/2

23 tháng 8 2017

a, \(2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy...

b, \(x^3+2x^2+x=0\)

\(\Leftrightarrow x\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy...

c, \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-1\end{matrix}\right.\)

Vậy...

d, \(x\left(2x-3\right)-2\left(3-2x\right)=0\)

\(\Leftrightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy...

23 tháng 8 2017

a) \(2x^2-4x=0\\ \Leftrightarrow2x\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b) \(x^3+2x^2+x=0\\\Leftrightarrow x\left(x^2+2x+1\right)=0\\ \Leftrightarrow x\left(x+1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

c) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\\ \Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

d) \(x\left(2x-3\right)-2\left(2x-3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)

a: \(x^2\left(2x-3\right)+8x-12=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)

=>2x-3=0

hay x=3/2

b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)

=>(2x-5)(x+11)=0

=>x=5/2 hoặc x=-11

c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{0;4;-4\right\}\)

15 tháng 10 2020

1.

a, \(\left(x+3\right)\left(x-3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)\)

\(=9\left(x-3\right)=9x-27\)

b, \(\left(2x+1\right)^2+2\left(2x+1\right)\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(2x+1+x-1\right)^2=9x^2\)

c, \(x\left(x-3\right)\left(x+3\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-9\right)-\left(x^4-1\right)\)

\(=x^3-9x-x^4+1=-x^4+x^3-9x+1\)

3 tháng 5 2020
https://i.imgur.com/88Zm20M.jpg
3 tháng 5 2020
https://i.imgur.com/zsGzAKT.jpg
11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)