Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
\(|2017-x|+|2018-x|+|2019-x|=2\left(1\right)\)
Ta có: \(2017-x=0\Leftrightarrow x=2017\)
\(2018-x=0\Leftrightarrow x=2018\)
\(2019-x=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
2017-x 2018-x 2019-x 2017 2018 2019 0 0 0 - - - - - - + + + + + +
+) Với \(x\le2017\Rightarrow\hept{\begin{cases}2017-x\ge0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=2017-x\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào(1) ta được :
\(2017-x+2018-x+2019-x=2\)
\(6054-3x=2\)
\(3x=6052\)
\(x=\frac{6052}{3}>2017\)( loại )
+) Với \(2017< x\le2018\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(x-2017+2018-x+2019-x=2\)
\(2020-x=2\)
\(x=2018\)( chọn )
+) Với \(2018< x\le2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=2019-x\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(x-2017+x-2018+2019-x=2\)
\(x-2016=2\)
\(x=2018\)( loại )
+) Với \(x>2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x< 0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=x-2019\end{cases}\left(5\right)}}\)
Thay (5) vào (1) ta được :
\(x-2017+x-2018+x-2019=2\)
\(3x-6054=2\)
\(3x=6056\)
\(x=\frac{6056}{3}< 2019\)( loại )
Vậy x=2018
Vì : (3x+1)2018+(2y-1)2018+\(\left|x+2y-z\right|\)2018=0
Nên: \(\left\{{}\begin{matrix}\left(3x+1\right)^{2018}=0\\\left(2y-1\right)^{2018}\\\left|x+2y-z\right|^{2018}=0\end{matrix}\right.=0\) ⇔\(\left\{{}\begin{matrix}3x+1=0\\2y-1=0\\x+2y-z=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{2}\\\dfrac{-1}{3}+1-z=0\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{2}\\z=\dfrac{2}{3}\end{matrix}\right.\)
Vậy : x=\(\dfrac{-1}{3}\) ; y=\(\dfrac{1}{2}\) ; z=\(\dfrac{2}{3}\)
/2017-x/+/2019-x/>=2
khi 2017<=x<=2018
/2018-x/>=0 mọi x
=>x=2018 là duy nhất
|2017-x|+|2018-x|+|2019-x|=2
nên sẽ có ít nhất 1 giá trị bằng 0
1. |2017-x|=0
2017-x=0
x=2017
=>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn)
2.|2018-x|=0
2018-x=0
x=2018
=>|2017-x|+|2018-x|+|2019-x|=2(thỏa mãn)
3.|2019-x|=0
2019-x=0
x=2019 =>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn) Vậy x=2018 để thỏa mãn điều kiện|2017-x|+|2018-x|+|2019-x|=2a) 2009 - |x - 2009| = x
=> |x - 2009| = 2009 - x (1)
ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)
Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)
Vậy x = 0
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)
\(\text{b)}\)
\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\)
\(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)
\(\text{Dấu "=" xảy ra khi:}\)
\(\left(2x-1\right)^{2018}=0\)
\(\Rightarrow2x-1\) \(=0\)
\(\Rightarrow2x\) \(=1\)
\(\Rightarrow x\) \(=\frac{1}{2}\)
\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)
\(\Rightarrow y-\frac{2}{5}\) \(=0\)
\(\Rightarrow y\) \(=\frac{2}{5}\)
\(\text{Nhớ k cho mình với nghe}\) :33
\(|x^{2018}+|x-1||=x^{2018}+2404\)
\(\Leftrightarrow\orbr{\begin{cases}x^{2018}+|x-1|=-x^{2018}-2404\\x^{2018}+|x-1|=x^{2018}+2404\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-\left(2x^{2018}+2404\right)\left(l\right)\\|x-1|=2404\left(n\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2404\\x-1=2404\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2403\\x=2405\end{cases}}}\)
V...
\(\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)
Ta thấy: \(x^{2018}\ge0\);\(\left|x-1\right|\ge0\)\(\Rightarrow x^{2018}+\left|x-1\right|\ge0\)
\(\Rightarrow\left|x^{2018}+\left|x-1\right|\right|=x^{2018}+2404\)
\(\Leftrightarrow x^{2018}+\left|x-1\right|=x^{2018}+2404\)
\(\left|x-1\right|=2404\)
\(\Rightarrow\orbr{\begin{cases}x-1=2404\\x-1=-2404\end{cases}}\Rightarrow\orbr{\begin{cases}x=2405\\x=-2403\end{cases}}\)
Vậy \(x\in\left\{2405;-2403\right\}\)