Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)
\(\Leftrightarrow\)\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}=\frac{x}{x\left(x-4\right)}\)
\(\Leftrightarrow\)\(-\frac{1}{x}+\frac{1}{x-4}=\frac{1}{x-4}\)
\(\Leftrightarrow\)\(\frac{-\left(x-4\right)+x}{x\left(x-4\right)}=\frac{x}{x\left(x-4\right)}\)
\(\Leftrightarrow\)\(4-x+x=x\)
\(\Leftrightarrow x=4\)
lo nói mk làm cách lâu chứ m cx hỏi người khác!!!!!!!!!!!
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
= \(\frac{1}{x}\)
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)=1/3
<=>1/x-1/x+1+1/x+1-1/x+2+1/x+2-1/x+3+1/x+3-1/x+4=1/3
<=>1/x-1/x+4=1/3
<=>x+4/x(x+4)-x/x(x+4) ( quy dong mau ) =1/3
<=>4/x(x+4)=1/3
<=> 4.3=x(x+4) ( nhan cheo )
<=> x(x+4)=12
<=> x^2+4x-12=0
<=>x^2-2x+6x-12=0
<=>x(x-2) + 6(x-2) =0
<=> (x-2)(x+6)=0
<=> x-2 =0 hoac x +6=0
<=>x=2 hoac x= -6
Vay x thuoc ( 2,-6 )
K mk nha !!
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x\text{+}2\right)}\text{+}\frac{1}{\left(x\text{+}2\right)\left(x\text{+}3\right)}+\frac{1}{\left(x\text{+}3\right)\left(x\text{+}4\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}-\frac{1}{x\text{+}1}\text{+}\frac{1}{x\text{+}1}-\frac{1}{x\text{+}2}\text{+}.....\text{+}\frac{1}{x\text{+}3}-\frac{1}{x\text{+}4}=\frac{1}{3}\)
\(\Rightarrow\)\(\frac{1}{x}-\frac{1}{x\text{+}4}=\frac{1}{3}\)
\(\Rightarrow\frac{x\text{+}4}{x\left(x\text{+}4\right)}-\frac{x}{x\left(x\text{+}4\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{4}{12}\)
\(\Rightarrow x\left(x\text{+}4\right)=12\)
mà x và x+4 cách nhau 4 đơn vị \(\Rightarrow x=2\)và x+4\(=\)6
Vậy \(x=2\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6
=1\x-1\x+6
=6\x(x+6)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+\right)\left(x+3\right)}+...+\frac{1}{\left(x+2015\right)\left(x+2016\right)}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+2015}-\frac{1}{x+2016}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+2016}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+2016}-\frac{1}{x+2016}=0\)
\(\frac{1}{x}-\frac{2x}{x+2016}=0\)
\(\frac{x+2016}{x\left(x+2016\right)}-\frac{2x}{x\left(x+2016\right)}=0\)
\(\frac{x+2016-2x}{x\left(x+2016\right)}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)
\(VT=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+3\right)\left(x+4\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+3}-\frac{1}{x+4}\)
\(=\frac{1}{x}-\frac{1}{x+4}=\frac{x+4-x}{x\left(x+4\right)}=\frac{4}{x\left(x+4\right)}\)
\(\Rightarrow\frac{4}{x\left(x+4\right)}=\frac{m}{x\left(x+4\right)}=VP\Rightarrow m=4\)