Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4x2 - 12x + 9 = 0 <=> (2x - 3)2 = 0 <=> 2x - 3 = 0 <=> x = 3/2.KL
b) ( 5 - 2x )( 2x + 7 ) + ( 25 - 4x2 ) = 0 <=> ( 5 - 2x )( 2x + 7 ) + ( 5 + 2x )( 5 - 2x ) = 0 <=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0. KL
<=> ( 5 - 2x )( 4x + 12 ) = 0 <=>\(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=2\frac{1}{2}\\x=-3\end{cases}}\)KL.
c) ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 3 ) = 0 <=> ( x + 3 )( x2 - 3x + 9 + x - 3 ) = 0 <=> ( x + 3 )( x2 -2x + 6 ) = 0 <=> x + 3 = 0 (vi x2 - 2x + 6 = ( x + 1 )2 + 5 > 0 voi moi x) KL
<=>x=-3.KL
d) [ 2 ( 2x + 7 ) ]2 - [ 3 ( x + 3 ) ]2 = 0 <=> ( 4x + 14 )2 - ( 3x + 9 )2 = 0 <=> ( 4x + 14 + 3x + 9 )( 4x + 14 - 3x -9 ) = 0
<=> ( 7x + 23 )( x + 5 ) = 0 <=> 7x + 23 = 0 hoac x + 5 = 0 <=> x = -23/7 hoac x = -5.KL
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
\(x^3-8-\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+16\right)=0\)
Lại có : \(x^2+x+16=\left(x+\dfrac{1}{2}\right)^2+\dfrac{63}{4}>0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy...
b/ \(A=x^2-2x+9=\left(x-1\right)^2+8\ge8\)
Dấu "=" xảy ra khi : \(x=1\)
Vậy...
c/ \(B=x^2+6x-3=\left(x^2+6x+9\right)-12=\left(x+3\right)^2-12\ge-12\)
Dấu "=" xảy ra khi \(x=-3\)
Vậy...
d/ \(C=\left(x-1\right)\left(x-3\right)+9=\left(x^2-4x+3\right)+9-\left(x^2-4x+4\right)+8=\left(x-2\right)^2+8\ge8\)
Dấu "=" xảy ra khi : \(x=2\)
Vậy ...
e/ \(D=-x^2-4x+7=-\left(x^2+4x+4\right)+3=-\left(x+2\right)^2+3\le3\)
Dấu "=" xảy ra khi \(x=-2\)
Vậy...
g/ \(E=5-4x^2+4x=-\left(4x^2-4x+4\right)+9=-\left(x-2\right)^2+9\le9\)
Dấu "=" xảy ra khi \(x=2\)
Vậy...
a: \(\left[\dfrac{1}{2}x^2\left(2x-1\right)^m-\dfrac{1}{2}x^{m+2}\right]:\dfrac{1}{2}x^2=0\)
\(\Leftrightarrow\left(2x-1\right)^m-x^m=0\)
\(\Leftrightarrow\left(2x-1\right)^m=x^m\)
=>2x-1=x
=>x=1
b: \(\left(2x-3\right)^8=\left(2x-3\right)^6\)
\(\Leftrightarrow\left(2x-3\right)^6\cdot\left(2x-4\right)\left(2x-2\right)=0\)
hay \(x\in\left\{\dfrac{3}{2};2;1\right\}\)
c: \(\Leftrightarrow4x^2-4x+1+y^2-\dfrac{2}{3}y+\dfrac{1}{9}+\dfrac{6}{9}=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y-\dfrac{1}{3}\right)^2+\dfrac{6}{9}=0\)(vô lý)
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
Bài 1:
a) \(\left(2x+3\right)\cdot\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-3=27-3=24\)
--> đpcm
b) Sửa đề: \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+27-\left(x^3+27x+9x^2+243\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)
--> đpcm
c) \(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3=2x^3-2x^3=0\)
--> đpcm
B1: a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-27-8x^3+2\)
\(=-25\)
b) c) Làm theo câu a áp dụng HĐT.
B2:
a) \(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2+3\right)\left(x+2-3\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\x=1\end{matrix}\right..\)
Mấy câu b,c,d bn chịu khó tạo HĐT nhé.
e) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=-\dfrac{255}{2}\)
Vậy \(x=-\dfrac{255}{2}\)
a) Áp dụng hằng đẳng thức số 3 bạn nhé
b) (2x + 3)(4x^2 - 6x +9) = 8x^3 + 9
Thay x= 120:2 = 60 vào biểu thức.
8* 60^3 + 9 = 1728009
c) = (2x + 1)^3
Thay x= -0,5 vào biểu thức
[2*(-0,5)+1]^3 = 0
d) = x^2 - 49 - x^2 - 2x - 1 = -50 - 2x
Thay x=49 vào biểu thức.
-50 - 2* 49 = -148
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)