Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
`@` H/s xác định `<=>{(x+2 >= 0),(2-x >= 0):}<=>{(x >= -2),(x <= 2):}<=>-2 <= x <= 2`
`=>TXĐ: D=[-2;2]`
`@-2 <= x <= 2`
`<=>{(0 <= x+2 <= 4),(2 >= -x >= -2):}`
`<=>{(0 <= x+2 <= 4),(4 >= 2-x >= 0):}`
`<=>{(0 <= \sqrt{x+2} <= 2),(2 >= \sqrt{2-x} >= 0):}`
`=>TGT` là `[0;2]`
a: ĐKXĐ: x\(\in\)R\{3}
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
ĐKXĐ: \(3x^2-4x+1>0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{3}\end{matrix}\right.\)
Vậy TXĐ: \(D=\left(-\infty;\frac{1}{3}\right)\cup\left(1;+\infty\right)\)
ĐKXĐ: \(\dfrac{\left|x-1\right|}{x+2}-1\ge0\Leftrightarrow\dfrac{\left|x-1\right|}{x+2}>1\)
Với \(x< -2\) ko thỏa mãn
Với \(x>-2\Rightarrow x+2>0\)
BPT tương đương: \(\left|x-1\right|>x+2\Rightarrow\left(x-1\right)^2>\left(x+2\right)^2\)
\(\Leftrightarrow6x< -3\Rightarrow x< -\dfrac{1}{2}\Rightarrow-2< x< -\dfrac{1}{2}\)
\(\Rightarrow x=-1\) là số nguyên duy nhất trong TXĐ của hàm số
để hs \(y=\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\) được xác định \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+8+2\sqrt{x+7}\ge0\\x+7\ge0\\1-x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-7\\x\ne1\end{matrix}\right.\)
vậy \(x\ge-7;x\ne1\)
Nguyễn cẩm Tú : \(x\ge-7\Rightarrow x+8+2\sqrt{x+7}>0\forall x\)
Lời giải:
\(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}=\sqrt{(\sqrt{x+2}+1)^2}+\sqrt{(\sqrt{1-x^2}+1)^2}\)
\(=|\sqrt{x+2}+1|+|\sqrt{1-x^2}+1|=\sqrt{x+2}+\sqrt{1-x^2}+2\)
ĐKXĐ: \(\left\{\begin{matrix} x+2\geq 0\\ 1-x^2\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ -1\leq x\leq 1\end{matrix}\right.\Leftrightarrow -1\leq x\leq 1\)
\(y=\frac{1}{x-1}\)
DKXĐ: x - 1 \(\ne\)0
<=> x \(\ne\)1
=> TXĐ: \(ℝ\backslash\left\{1\right\}\)hoặc \(\left(-\infty;1\right)\)U\(\left(1;+\infty\right)\)hoặc \(\left(-\infty;+\infty\right)\backslash\left\{1\right\}\)