K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 7 2020

Do \(A\left(a;b\right)\in d\Rightarrow3a-2b-1=0\)

\(\Leftrightarrow3a-2b=1\)

\(\Rightarrow1=\left(3a-2b\right)^2\le\left(9+4\right)\left(a^2+b^2\right)\)

\(\Rightarrow a^2+b^2\ge\frac{1}{13}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3a-2b=1\\\frac{a}{3}=\frac{b}{-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{13}\\b=-\frac{2}{13}\end{matrix}\right.\)

4 tháng 6 2020

mình ghi nhầm để rồi, (C) : x2 +y2 -2x+4y-4=0

NV
4 tháng 6 2020

Đường tròn (C) tâm \(I\left(3;-1\right)\) bán kính \(R=2\)

Chắc bạn ghi nhầm đề câu a, tọa độ A như vậy thì A trùng tâm I luôn còn gì? Khi đó mọi đường thẳng d qua A đều cắt đường tròn với dây cung là đường kính \(\Rightarrow\) ko thể xác định d

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm

29 tháng 6 2020

Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

NV
2 tháng 6 2020

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)

Tam giác PAB đều \(\Leftrightarrow\widehat{APB}=60^0\Rightarrow\widehat{API}=30^0\)

\(\Rightarrow IP=\frac{IA}{sin30^0}=2IA=2R=6\)

\(\Rightarrow P\) thuộc đường tròn (C') tâm I bán kính 6

Để có duy nhất điểm P \(\Leftrightarrow\) d tiếp xúc (C')

\(\Leftrightarrow d\left(I;d\right)=6\Leftrightarrow\frac{\left|3.1-4\left(-2\right)+m\right|}{\sqrt{3^2+\left(-4\right)^2}}=6\)

\(\Leftrightarrow\left|m+11\right|=30\Rightarrow\left[{}\begin{matrix}m=19\\m=-41\end{matrix}\right.\)