K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

 ptr hoành độ giao điểm:
2x2= 3x-1
=> 2x2 - 3x+1 =0
=> (x-1)(2x-1) = 0
=> x=1; y= 2 hoặc x =1/2; y=1/2

1) Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+2-2x+3=0\\y=3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\y=3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\cdot\left(-5\right)+2=-15+2=-13\end{matrix}\right.\)

Vậy: Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là (-5;-13)

2) Đặt (d1): y=3x+2;

(d2): y=2x-3;

(d3): y=(m-2)x+3-m

Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=2\cdot\left(-5\right)-3=-13\end{matrix}\right.\)

Để (d1), (d2) và (d3) đồng quy thì (d3) đi qua tọa độ giao điểm của (d1) và (d2) 

Thay x=-5 và y=-13 vào (d3), ta được:

\(\left(m-2\right)\cdot\left(-5\right)+3-m=-13\)

\(\Leftrightarrow-5m+10+3-m+13=0\)

\(\Leftrightarrow-6m+26=0\)

\(\Leftrightarrow-6m=-26\)

hay \(m=\dfrac{13}{3}\)

Vậy: Để 3 đường thẳng y=3x+2; y=2x-3 và y=(m-2)x+3-m đồng quy thì \(m=\dfrac{13}{3}\)

18 tháng 9 2021

Gọi \(A\left(x_0;y_0\right)\) là giao điểm \(\left(d_1\right)\) và \(\left(d_2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}y_0=-3x_0-7\\y_0=2x_0+3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{4}{5}\\y_0=-\dfrac{23}{5}\end{matrix}\right.\)

\(\Rightarrow M\left(-\dfrac{4}{5};-\dfrac{23}{5}\right)\)

a: Phương trình hoành độ giao điểm là:

3x-2=x-3

\(\Leftrightarrow2x=-1\)

hay \(x=-\dfrac{1}{2}\)

Thay \(x=-\dfrac{1}{2}\) vào y=x-3, ta được:

\(y=-\dfrac{1}{2}-3=\dfrac{-7}{2}\)

15 tháng 10 2023

Bạn tự vẽ nhé.

\(a,\) 2 đồ thị hàm số \(y=2x,y=-3x+5\) giao nhau khi và chỉ khi :

\(2x=-3x+5\\ \Leftrightarrow5x=5\\ \Leftrightarrow x=1\)

Thay \(x=1\) vào \(y=2x\Leftrightarrow y=2\)

Vậy giao điểm của 2 đồ thị là \(\left(1;2\right)\)

\(b,\) 2 đồ thị hàm số \(y=3x+2,y=-\dfrac{1}{2}x+1\) giao nhau khi và chỉ khi :

\(3x+2=-\dfrac{1}{2}x+1\\ \Leftrightarrow\dfrac{7}{2}x=-1\\ \Leftrightarrow x=-\dfrac{2}{7}\)

Thay \(x=-\dfrac{2}{7}\) vào \(y=3x+2\Rightarrow y=\dfrac{8}{7}\)

Vậy giao điểm của 2 đồ thị là \(\left(-\dfrac{2}{7};\dfrac{8}{7}\right)\)

\(c,\) 2 đồ thị hàm số \(y=\dfrac{3}{2}x-2,y=-\dfrac{1}{2}x+2\) giao nhau khi và chỉ khi :

\(\dfrac{3}{2}x-2=-\dfrac{1}{2}x+2\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

Thay \(x=2\) vào \(y=\dfrac{3}{2}x-2\Rightarrow y=1\)

Vậy giao điểm của 2 đồ thị là \(\left(2;1\right)\)

\(d,\) 2 đồ thị hàm số \(y=-2x+5,y=x+2\) giao nhau khi và chỉ khi :

\(-2x+5=x+2\\ \Leftrightarrow-3x=-3\\ \Leftrightarrow x=1\)

Thay \(x=1\) vào \(y=x+2\Rightarrow y=3\)

Vậy giao điểm của 2 đồ thị là \(\left(1;3\right)\)

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{1}{3}x+m+\dfrac{1}{3}=2x-6m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{3}x=-7m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21}{5}m-3\\y=\dfrac{1}{3}\left(\dfrac{21}{5}m-3\right)+m+\dfrac{1}{3}=\dfrac{7}{5}m-1+m+\dfrac{1}{3}=\dfrac{12}{5}m-\dfrac{2}{3}\end{matrix}\right.\)

 b: Theo đề, ta có: \(\dfrac{12}{5}m-\dfrac{2}{3}=9\cdot\left(\dfrac{21}{5}m-3\right)^2\)

Đến đây bạn chỉ cần giải phương trình bậc hai ra thôi

NV
6 tháng 4 2022

Phương trình hoành độ giao điểm (P) và (d):

\(2x^2=-3x+5\Leftrightarrow2x^2+3x-5=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-\dfrac{5}{2}\Rightarrow y=\dfrac{25}{2}\end{matrix}\right.\)

Vậy (d) và (P) cắt nhau tại 2 điểm có tọa độ lần lượt là: \(\left(1;2\right);\left(-\dfrac{5}{2};\dfrac{25}{2}\right)\)

6 tháng 8 2021

a, bạn tự vẽ nhé 

b, Hoành độ giao điểm thỏa mãn phương trình 

\(2x-3=-3x+7\Leftrightarrow5x=10\Leftrightarrow x=2\)

Thay vào ptđt d1 ta được : \(y=4-3=1\)

Vậy d1 cắt d2 tại A(2;1)